Pregunta
upstudy study bank question image url

Determine if the function below has a horizontal or a slant asymptote, and explain why. \[ f(x)=\frac{-11 x-23 x^{2}-6-12 x^{3}}{2+x+4 x^{2}} \] Answer Attempt 1 out of 2 The function has a \( \quad \vee \) asymptote because the degree of the numerator is \( \square \) the degree of the denominator. As \( x \) approaches infinity (positive or negative), the value of \( y \) approaches \( \square \).

Ask by Donnelly Wade. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function has a slant asymptote \( y = -3x - 5 \) because the degree of the numerator is greater than the degree of the denominator. As \( x \) approaches infinity, \( y \) approaches \( -3x - 5 \).

Solución

To determine if the function \( f(x) = \frac{-11x - 23x^2 - 6 - 12x^3}{2 + x + 4x^2} \) has a horizontal or slant asymptote, we need to analyze the degrees of the numerator and the denominator. 1. **Identify the degrees of the numerator and denominator:** - The numerator is \( -11x - 23x^2 - 6 - 12x^3 \). The highest degree term is \( -12x^3 \), so the degree of the numerator \( n = 3 \). - The denominator is \( 2 + x + 4x^2 \). The highest degree term is \( 4x^2 \), so the degree of the denominator \( m = 2 \). 2. **Compare the degrees:** - Since the degree of the numerator \( n = 3 \) is greater than the degree of the denominator \( m = 2 \) (i.e., \( n > m \)), the function does not have a horizontal asymptote. Instead, it may have a slant (oblique) asymptote. 3. **Finding the slant asymptote:** - To find the slant asymptote, we perform polynomial long division of the numerator by the denominator. Let's perform the polynomial long division to find the slant asymptote. ### Polynomial Long Division 1. Divide the leading term of the numerator by the leading term of the denominator: \[ \frac{-12x^3}{4x^2} = -3x \] 2. Multiply the entire denominator by \(-3x\): \[ -3x(2 + x + 4x^2) = -6x - 3x^2 - 12x^3 \] 3. Subtract this from the original numerator: \[ (-11x - 23x^2 - 6 - 12x^3) - (-12x^3 - 3x^2 - 6x) = (-11x + 6x) + (-23x^2 + 3x^2) - 6 = -5x - 20x^2 - 6 \] 4. Now, divide the new leading term by the leading term of the denominator: \[ \frac{-20x^2}{4x^2} = -5 \] 5. Multiply the entire denominator by \(-5\): \[ -5(2 + x + 4x^2) = -10 - 5x - 20x^2 \] 6. Subtract this from the previous result: \[ (-5x - 20x^2 - 6) - (-20x^2 - 5x - 10) = -6 + 10 = 4 \] The result of the division is: \[ f(x) = -3x - 5 + \frac{4}{2 + x + 4x^2} \] ### Conclusion As \( x \) approaches infinity (positive or negative), the term \( \frac{4}{2 + x + 4x^2} \) approaches \( 0 \). Therefore, the slant asymptote is given by: \[ y = -3x - 5 \] ### Final Answer The function has a slant asymptote because the degree of the numerator is greater than the degree of the denominator. As \( x \) approaches infinity (positive or negative), the value of \( y \) approaches \( -3x - 5 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine whether the function has a horizontal or slant asymptote, first look at the degrees of the numerator and the denominator. The degree of the numerator, \( -11x - 23x^2 - 6 - 12x^3 \), is 3, while the degree of the denominator, \( 2 + x + 4x^2 \), is 2. Since the degree of the numerator is greater than the degree of the denominator, a slant (or oblique) asymptote exists rather than a horizontal one. To find the equation of the slant asymptote, you can perform polynomial long division of the numerator by the denominator. As \( x \) approaches infinity or negative infinity, the leading behavior of the function will resemble that of the slant asymptote, giving us insight into its end behavior. For further consultation, you might want to take a look at resources like "Calculus for Dummies" or online video tutorials from platforms like Khan Academy that explain asymptotes in detail. They tend to break down complex topics into fun, bite-sized pieces! Additionally, practicing with different functions can help solidify your understanding of how to identify asymptotes effectively.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad