Use transformations of \( f(x)=x^{2} \) to graph the following function. \[ g(x)=x^{2}-5 \]
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To graph \( g(x) = x^2 - 5 \), start with the base graph of \( f(x) = x^2 \), which is a parabola opening upwards with its vertex at the origin (0,0). Now, to transform this graph into \( g(x) \), you’ll shift the entire graph of \( f(x) \) downward by 5 units. This change moves the vertex of the parabola from (0,0) to (0,-5). Now, the graph of \( g(x) \) retains the same shape as \( f(x) \), just positioned lower on the y-axis. To visualize the transformation, draw the original parabola and mark the original vertex at (0,0). Then, simply lower this vertex to (0,-5) and sketch the parabola maintaining its width and symmetry about the y-axis. Voilà! You’ve successfully graphed \( g(x) = x^2 - 5 \), and now you can easily see how it relates to \( f(x) \).