8. Use set notation to describe the domain and range for \( f(x)=x^{2}+5 \). Hint: you can always graph a function first to help you see the domain and range more clearly.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
The function \( f(x) = x^2 + 5 \) is a quadratic function that opens upwards. The domain includes all real numbers since you can plug in any value for \( x \) and get a valid output. In set notation, the domain is expressed as \( \text{Domain} = \{ x \in \mathbb{R} \} \). The range, however, starts from the minimum value of the function, which is 5 (occurring when \( x = 0 \)) and goes to infinity. In set notation, the range is \( \text{Range} = \{ y \in \mathbb{R} \; | \; y \geq 5 \} \). Graphing the function shows the "U" shape, helping to visualize this clearly!