Pregunta
upstudy study bank question image url

Find all other zeros of , given that is a zero.
(If there is more than one zero, separate them with commas.)

Ask by Wagner Thornton. in the United States
Mar 31,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The other zeros are and .

Solución

We are given the polynomial
and one zero
Step 1. Conjugate Root Theorem
Since the polynomial has real coefficients, the complex conjugate of a zero is also a zero. Therefore,
is also a zero of .
Step 2. Form the Quadratic Factor
The two complex zeros give the quadratic factor:
Rewrite each factor as:
Multiply the two factors:
Since , we have:
Expanding :
thus the quadratic factor is:
Step 3. Divide the Polynomial by the Quadratic Factor
Since the polynomial is cubic, dividing by the quadratic factor must yield a linear factor. Write:
for some constant .
Expanding the product:
Combine like terms:
Setting this equal to , we match coefficients.
Coefficient of :
Coefficient of :
which matches the coefficient in .
Constant term:
which matches the constant .
Thus, the third zero is:
Final Answer
The other zeros of are:

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find all zeros of the polynomial , given that is one of the zeros, we can use the fact that complex roots come in conjugate pairs. Therefore, is also a zero of the polynomial.
Now, let’s find the third zero. We can start by performing polynomial division to divide by the quadratic polynomial formed by the two complex zeros, which is .
Calculating the product of these factors:
This simplifies to:
Now we divide by :
Using synthetic or long division, we have:
where is the third zero. Performing the division:
  1. Divide the leading term by to get .
  2. Multiply by and subtract: Now, subtract from :
  3. Divide the leading term by to get .
  4. Multiply by : Subtract this from gives .
Now we have:
To find the zeros of :
Using the quadratic formula :
Here, , , and :
So the zeros are , , and .
Thus, all the zeros of are:

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad