Pregunta
upstudy study bank question image url

2. Emefa walked \( 2 t \mathrm{~km} \) from a village, P to \( v_{i_{\text {sit }}} \) a friend in another village, Q on a bearing of \( 065^{\circ} \). After spending some time with her friend, she continued to a nearby town, R , \( 3 t \mathrm{~km} \) away on a bearing of \( 155^{\circ} \). If the distance between P and R is \( 6 \sqrt{13} \mathrm{~km} \) : (a) illustrate the information in a diagram; (b) calculate, correct to the nearest whole number, the: (i) value of \( t \); (ii) bearing of R from P .

Ask by Lang Griffin. in Ghana
Jan 05,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**(b)(i) The value of \( t \) is 6 km.** **(b)(ii) The bearing of R from P is approximately \(122^\circ\).**

Solución

Let's solve the problem step by step. ### **Given:** - **From Village P to Village Q:** - Distance: \(2t\) km - Bearing: \(065^\circ\) - **From Village Q to Town R:** - Distance: \(3t\) km - Bearing: \(155^\circ\) - **Distance between Village P and Town R (PR):** \(6\sqrt{13}\) km --- ### **Part (b)(i): Calculating the Value of \(t\)** **1. **Establish a Coordinate System:** - Let’s place Village P at the origin \((0,0)\). - Bearings are measured clockwise from the north (positive y-axis). **2. **Determine Coordinates of Village Q:** - **Bearing of \(065^\circ\):** - \(x_Q = 2t \cdot \sin(65^\circ)\) - \(y_Q = 2t \cdot \cos(65^\circ)\) - **Approximations:** - \(\sin(65^\circ) \approx 0.9063\) - \(\cos(65^\circ) \approx 0.4226\) - **Coordinates:** - \(x_Q \approx 2t \cdot 0.9063 = 1.8126t\) - \(y_Q \approx 2t \cdot 0.4226 = 0.8452t\) **3. **Determine Coordinates of Town R:** - **Bearing of \(155^\circ\):** - \(x_R = x_Q + 3t \cdot \sin(155^\circ)\) - \(y_R = y_Q + 3t \cdot \cos(155^\circ)\) - **Approximations:** - \(\sin(155^\circ) = \sin(180^\circ - 25^\circ) = \sin(25^\circ) \approx 0.4226\) - \(\cos(155^\circ) = -\cos(25^\circ) \approx -0.9063\) - **Coordinates:** - \(x_R \approx 1.8126t + 3t \cdot 0.4226 = 3.0805t\) - \(y_R \approx 0.8452t + 3t \cdot (-0.9063) = -1.8737t\) **4. **Calculate Distance PR:** - \(PR = \sqrt{(x_R)^2 + (y_R)^2} = 6\sqrt{13}\) - Squaring both sides: \[ (3.0805t)^2 + (-1.8737t)^2 = (6\sqrt{13})^2 \] \[ 9.489t^2 + 3.508t^2 = 468 \] \[ 13.0t^2 = 468 \] \[ t^2 = \frac{468}{13} = 36 \] \[ t = \sqrt{36} = 6 \] **Answer:** **(b)(i) The value of \( t \) is **6 km**. --- ### **Part (b)(ii): Calculating the Bearing of R from P** **1. **Determine Coordinates with \( t = 6 \):** - \(x_R = 3.0805 \times 6 = 18.483\) km - \(y_R = -1.8737 \times 6 = -11.242\) km **2. **Calculate the Bearing:** - The bearing is the angle measured clockwise from the north. **3. **Compute the Angle:** - \(\tan(\theta) = \frac{x_R}{|y_R|} = \frac{18.483}{11.242} \approx 1.642\) - \(\theta = \arctan(1.642) \approx 58^\circ\) **4. **Determine the Bearing:** - Since \(y_R\) is negative and \(x_R\) is positive, Town R is in the southeast quadrant. - Bearing \( = 180^\circ - 58^\circ = 122^\circ \) **Answer:** **(b)(ii) The bearing of R from P is approximately **\(122^\circ\)**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To illustrate Emefa's journey, imagine a coordinate plane where you can plot points denoting her path: 1. Start at point P (Village P). 2. From P, draw a line at a 65° angle from North, and mark a point for Q (Village Q) at a distance of \(2t\) km. 3. From Q, draw a line at a 155° angle from North towards point R (Town R), marking this at a distance of \(3t\) km. Now, to solve for \(t\): Using the Law of Cosines on triangle PQR where PR = \(6\sqrt{13}\): \[ PR^2 = PQ^2 + QR^2 - 2(PQ)(QR)\cos(\angle QPR) \] Calculate the angle QPR using bearings: \(\angle QPR = 155° - 65° = 90°\). Hence, cos(90°) = 0. So rearranging gives: \[ (6\sqrt{13})^2 = (2t)^2 + (3t)^2 \] \[ 468 = 4t^2 + 9t^2 \] \[ 468 = 13t^2 \Rightarrow t^2 = \frac{468}{13} \Rightarrow t = \sqrt{36} = 6. \] Now, for part (ii), calculating the bearing of R from P involves finding the angles to add: 1. From P to Q: \(65^\circ\) 2. From Q to R: \(155^\circ - 180^\circ = -25^\circ\). Thus, the concept of bearings implies an adjustment considering clockwise from North. Now, summing these gives: \[ \text{Bearing of R from P} = 65 + 130 (from east 155°) = 195°. \] So, the bearing of R from P is \(195^\circ\). --- Fun Fact: The Law of Cosines, or if you like, the “Triangle’s Secret Sauce”, is used for solving those tricky triangle problems where you don’t have a right angle to work with, often stealing the spotlight in geometry class! Further Reading: If you're intrigued by bearings and triangle properties, try delving into trigonometry textbooks or online courses that cover navigation and surveying techniques—they're like treasure maps for the mathematically adventurous!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad