Pregunta
Work out the two possible values of \( c \) in the following equation: \[ 2 c^{2}-33=65 \]
Ask by Martin French. in Spain
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The two possible values of \( c \) are 7 and -7.
Solución
To find the two possible values of \( c \) that satisfy the equation:
\[
2c^{2} - 33 = 65
\]
follow these steps:
### Step 1: Isolate the Quadratic Term
Start by moving the constant term (\(-33\)) to the other side of the equation:
\[
2c^{2} = 65 + 33
\]
\[
2c^{2} = 98
\]
### Step 2: Solve for \( c^{2} \)
Divide both sides of the equation by 2 to solve for \( c^{2} \):
\[
c^{2} = \frac{98}{2}
\]
\[
c^{2} = 49
\]
### Step 3: Take the Square Root
To find \( c \), take the square root of both sides. Remember that both positive and negative roots are possible:
\[
c = \sqrt{49} \quad \text{or} \quad c = -\sqrt{49}
\]
\[
c = 7 \quad \text{or} \quad c = -7
\]
### Conclusion
The two possible values of \( c \) that satisfy the equation are:
\[
c = 7 \quad \text{and} \quad c = -7
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To find the possible values of \( c \), we start by solving the equation: \[ 2 c^{2} - 33 = 65 \] First, we add 33 to both sides: \[ 2 c^{2} = 65 + 33 \] \[ 2 c^{2} = 98 \] Next, we divide both sides by 2: \[ c^{2} = \frac{98}{2} \] \[ c^{2} = 49 \] Finally, we take the square root of both sides. Remember, taking the square root gives us both the positive and negative solutions: \[ c = \pm \sqrt{49} \] \[ c = \pm 7 \] So the two possible values of \( c \) are \( 7 \) and \( -7 \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium