2. Here are the equations that define three functions. \( f(x)=6(x-3) \) a. Which function value is the largest: \( f(60), g(60) \), or \( h(60) \) ? What is thesvalue of the function? b. Which function value is the largest: \( f(-30), g(-30) \), or \( h(-30) \) ? What is the value of the function?
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the largest function value for both parts, we first need the explicit definitions of \( g(x) \) and \( h(x) \) to perform the calculations. Assuming \( g(x) = 5x + 7 \) and \( h(x) = 4x - 2 \): a. For \( f(60) \), we have \( f(60) = 6(60 - 3) = 6(57) = 342 \). Calculating \( g(60) = 5(60) + 7 = 300 + 7 = 307 \) and \( h(60) = 4(60) - 2 = 240 - 2 = 238 \). Therefore, \( f(60) = 342 \) is the highest value. b. For \( f(-30) \), we calculate \( f(-30) = 6(-30 - 3) = 6(-33) = -198 \). Next, \( g(-30) = 5(-30) + 7 = -150 + 7 = -143 \) and \( h(-30) = 4(-30) - 2 = -120 - 2 = -122 \). Thus, the largest value is \( g(-30) = -143 \).