Pregunta
upstudy study bank question image url

From a group of 10 boys and 13 girls, a committee of 5 students is chosen at random. a. What is the probability that all 5 members on the committee will be girls? b. What is the probability that all 5 members of the committee will be boys? c. What is the probability that there will be at least 1 girl on the committee? a. The probability that all 5 members on the committee will be girls is (Type an integer or a simplified fraction.)

Ask by Elliott Malone. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that all 5 members on the committee will be girls is \(\dfrac{117}{3059}\).

Solución

To find the probability that all 5 members of the committee will be girls, we'll use combinatorial analysis. **Total number of students:** - Boys: 10 - Girls: 13 - **Total:** \(10 + 13 = 23\) **Total ways to choose a committee of 5:** \[ \binom{23}{5} = \frac{23!}{5!(23-5)!} = 33,649 \] **Ways to choose 5 girls from 13:** \[ \binom{13}{5} = \frac{13!}{5!(13-5)!} = 1,287 \] **Probability that all 5 members are girls:** \[ \text{Probability} = \frac{\binom{13}{5}}{\binom{23}{5}} = \frac{1,287}{33,649} \] **Simplifying the fraction:** - The greatest common divisor (GCD) of 1,287 and 33,649 is 11. \[ \frac{1,287 \div 11}{33,649 \div 11} = \frac{117}{3,059} \] So, the simplified probability is: \[ \boxed{\dfrac{117}{3059}} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the probabilities, we will first determine the total number of ways to choose a committee of 5 members from the group of 23 students (10 boys and 13 girls). The total combination of choosing 5 students out of 23 can be calculated using the combination formula: \[ \text{Total combinations} = \binom{n}{r} = \frac{n!}{r!(n-r)!} \] Here, \( n = 23 \) and \( r = 5 \). **Total combinations:** \[ \binom{23}{5} = \frac{23!}{5!(23-5)!} = \frac{23 \times 22 \times 21 \times 20 \times 19}{5 \times 4 \times 3 \times 2 \times 1} = 33649 \] Now, let's answer the questions: a. **Probability that all 5 members will be girls:** The number of ways to choose 5 girls from 13 is: \[ \binom{13}{5} = \frac{13!}{5!(13-5)!} = \frac{13 \times 12 \times 11 \times 10 \times 9}{5 \times 4 \times 3 \times 2 \times 1} = 1287 \] The probability is: \[ P(\text{all girls}) = \frac{\binom{13}{5}}{\binom{23}{5}} = \frac{1287}{33649} \] b. **Probability that all 5 members will be boys:** The number of ways to choose 5 boys from 10 is: \[ \binom{10}{5} = \frac{10!}{5!(10-5)!} = \frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2 \times 1} = 252 \] The probability is: \[ P(\text{all boys}) = \frac{\binom{10}{5}}{\binom{23}{5}} = \frac{252}{33649} \] c. **Probability that there will be at least 1 girl on the committee:** We can find this by taking the complement of the probability that there are no girls (i.e., all boys): \[ P(\text{at least 1 girl}) = 1 - P(\text{all boys}) \] Using our previous result: \[ P(\text{at least 1 girl}) = 1 - \frac{252}{33649} = \frac{33649 - 252}{33649} = \frac{33397}{33649} \] In conclusion: - a. The probability that all 5 members on the committee will be girls is \(\frac{1287}{33649}\). - b. The probability that all 5 members of the committee will be boys is \(\frac{252}{33649}\). - c. The probability that there will be at least 1 girl on the committee is \(\frac{33397}{33649}\).

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad