Pregunta
upstudy study bank question image url

Three times two less than a number is greater than or equal to five times the number. Find all of the numbers that satisfy the given conditions. Let \( n= \) a number. Choose the inequality that represents the given relationship. \( 3(2)-n \geq 5 n \) \( 3(2-n) \geq 5 n \) \( 3 n-2 \geq 5 n \) \( 3(n-2) \geq 5 n \) DoNEIV

Ask by Bolton George. in the United States
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

All numbers less than or equal to -3 satisfy the inequality.

Solución

To solve the problem, we need to translate the given statement into an inequality. The statement is: "Three times two less than a number is greater than or equal to five times the number." 1. **Identify the variable**: Let \( n \) be the number. 2. **Translate the phrase "two less than a number"**: This can be expressed as \( n - 2 \). 3. **Translate "three times two less than a number"**: This becomes \( 3(n - 2) \). 4. **Translate "five times the number"**: This is simply \( 5n \). 5. **Set up the inequality**: The statement says that "three times two less than a number is greater than or equal to five times the number." This can be written as: \[ 3(n - 2) \geq 5n \] Now, we can solve the inequality \( 3(n - 2) \geq 5n \). ### Step-by-step solution: 1. **Distribute the 3**: \[ 3n - 6 \geq 5n \] 2. **Rearrange the inequality**: Subtract \( 3n \) from both sides: \[ -6 \geq 5n - 3n \] This simplifies to: \[ -6 \geq 2n \] 3. **Divide both sides by 2** (note that dividing by a positive number does not change the inequality): \[ -3 \geq n \] or equivalently, \[ n \leq -3 \] ### Conclusion: The solution to the inequality is that all numbers \( n \) that satisfy the condition are those less than or equal to -3. Thus, the final answer is: \[ n \leq -3 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To express "three times two less than a number" mathematically, we need to identify that as \(3(2-n)\). The phrase states that this quantity is "greater than or equal to five times the number," which translates to \(5n\). Therefore, the correct inequality representing the given relationship is \(3(2-n) \geq 5n\). Once you have your inequality, solving for \(n\) involves distributing and moving terms around. This can help in determining the values of \(n\) that satisfy the condition. To solve the inequality: 1. Distribute \(3\) on the left side: \(3 \cdot 2 - 3n \geq 5n\) becomes \(6 - 3n \geq 5n\). 2. Add \(3n\) to both sides: \(6 \geq 8n\). 3. Now, divide by \(8\): \(n \leq \frac{6}{8}\) or \(n \leq \frac{3}{4}\). Therefore, all numbers \(n\) that are less than or equal to \(\frac{3}{4}\) satisfy the condition!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad