Pregunta
upstudy study bank question image url

A particle with unit charge ( \( q=1 \) ) enters a constant magnetic field \( \mathbf{B}=\mathbf{i}+j \) with velocity \( \mathbf{v}=20 \mathrm{k} \). Find the magnitude and direction of the force on the particle. Make a sketch of the magnetic field, the velocity, and the force. What is the magnitude of the force on the particle? \( 20 \sqrt{2} \) (Type an exact answer, using radicals as needed.) What is the direction of the force on the particle? Select the correct choice below and fill in the answer box to complete your choice. A. The force is applied at \( a(n) \square^{\circ} \) angle with the positive \( y \)-axis in the \( y z \)-plane. B. The force is applied at \( a(n) \square^{\circ} \) angle with the positive \( x \)-axis in the xz-plane. C. The force is applied at \( a(n) \square^{\circ} \) angle with the positive \( x \)-axis in the \( x y \)-plane.

Ask by Morrison Davey. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The force on the particle has a magnitude of \( 20\sqrt{2} \) and is applied at a \( 45^\circ \) angle with the positive \( y \)-axis in the \( y z \)-plane.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Mind Expander

To find the force on a charged particle moving in a magnetic field, we can use the equation for the magnetic force: \[ \mathbf{F} = q (\mathbf{v} \times \mathbf{B}) \] Given \( q = 1 \), \( \mathbf{B} = \mathbf{i} + \mathbf{j} \), and \( \mathbf{v} = 20 \mathbf{k} \), we can compute the cross product \( \mathbf{v} \times \mathbf{B} \). Calculating the cross product, we have: \[ \mathbf{v} \times \mathbf{B} = (20 \mathbf{k}) \times (\mathbf{i} + \mathbf{j}) = 20 (\mathbf{k} \times \mathbf{i}) + 20 (\mathbf{k} \times \mathbf{j}) \] Using the right-hand rule, we find \( \mathbf{k} \times \mathbf{i} = -\mathbf{j} \) and \( \mathbf{k} \times \mathbf{j} = \mathbf{i} \). Thus: \[ \mathbf{v} \times \mathbf{B} = 20 (-\mathbf{j}) + 20 \mathbf{i} = 20 \mathbf{i} - 20 \mathbf{j} \] This means the force \( \mathbf{F} \) is: \[ \mathbf{F} = q (\mathbf{v} \times \mathbf{B}) = 20 \mathbf{i} - 20 \mathbf{j} \] The magnitude of this force is: \[ |\mathbf{F}| = \sqrt{(20)^2 + (-20)^2} = \sqrt{400 + 400} = 20 \sqrt{2} \] Now, regarding the direction of the force: To analyze the angle, we can use the components of the force \( \mathbf{F} = (20, -20, 0) \). We can find the angle with respect to the axis in the \( xy \)-plane. The \( x \)-component is 20 and the \( y \)-component is -20. The angle \( \theta \) with the positive \( x \)-axis is given by: \[ \tan(\theta) = \frac{F_y}{F_x} = \frac{-20}{20} = -1 \] Thus, \( \theta = -45^\circ \), indicating it points downward in the \( xy \)-plane. The angle is typically expressed positively. Therefore, the answer to the force angle is \( 315^\circ \) (or \( -45^\circ \)), which is measured from the positive x-axis. So for the final answers: - The magnitude of the force on the particle is \( 20\sqrt{2} \). - The force is applied at \( 315^{\circ} \) angle with the positive \( x \)-axis in the \( xy \)-plane (choose option C).

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad