Pregunta
upstudy study bank question image url

1 of 1 gure What is the average velocity \( v_{\mathrm{av}} \) of the particle over the time interval \( \Delta t=50.0 \mathrm{~s} \) ? Express your answer in meters per second. View Available Hint(s) \[ v_{\mathbf{a v}}= \] \( \square \) \[ \mathrm{m} / \mathrm{s} \] Submit Part C

Ask by Dawson Page. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To find the average velocity \( v_{\mathrm{av}} \), use the formula: \[ v_{\mathrm{av}} = \frac{\Delta x}{\Delta t} \] Where: - \( \Delta x \) is the displacement in meters. - \( \Delta t \) is the time interval in seconds. **Steps:** 1. Calculate displacement (\( \Delta x \)) by subtracting the initial position from the final position. 2. Divide the displacement by the time interval to get the average velocity. **Example:** If a particle moves from 100 m to 300 m in 50.0 s: \[ \Delta x = 300\, \text{m} - 100\, \text{m} = 200\, \text{m} \] \[ v_{\mathrm{av}} = \frac{200\, \text{m}}{50.0\, \text{s}} = 4\, \text{m/s} \] **Final Answer:** \[ v_{\mathrm{av}} = 4\, \text{m/s} \]

Solución

To calculate the **average velocity** (\( v_{\mathrm{av}} \)) of a particle over a time interval (\( \Delta t \)), you need information about the particle's displacement (\( \Delta x \)) during that time. The formula for average velocity is: \[ v_{\mathrm{av}} = \frac{\Delta x}{\Delta t} \] Where: - \( \Delta x \) is the displacement (in meters). - \( \Delta t \) is the time interval (in seconds). **Steps to Calculate Average Velocity:** 1. **Determine Displacement (\( \Delta x \)):** - Displacement is the straight-line distance from the starting point to the ending point in a specific direction. - If you have the initial and final positions (\( x_i \) and \( x_f \)), calculate displacement as: \[ \Delta x = x_f - x_i \] 2. **Use the Average Velocity Formula:** - Once you have \( \Delta x \) and \( \Delta t \), plug them into the formula: \[ v_{\mathrm{av}} = \frac{\Delta x}{\Delta t} \] **Example:** Suppose a particle moves from position \( x_i = 100 \) meters to \( x_f = 300 \) meters over a time interval of \( \Delta t = 50.0 \) seconds. 1. **Calculate Displacement:** \[ \Delta x = x_f - x_i = 300\, \text{m} - 100\, \text{m} = 200\, \text{m} \] 2. **Calculate Average Velocity:** \[ v_{\mathrm{av}} = \frac{200\, \text{m}}{50.0\, \text{s}} = 4\, \text{m/s} \] **Final Answer:** \[ v_{\mathrm{av}} = 4\, \text{m/s} \] *Please provide the displacement or additional information about the particle's motion if you need a more specific calculation.*

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the average velocity \( v_{\mathrm{av}} \) of a particle over a time interval \( \Delta t \), you need to know the initial and final positions of the particle. The average velocity is calculated using the formula: \[ v_{\mathrm{av}} = \frac{\Delta x}{\Delta t} \] where \( \Delta x \) is the change in position (final position - initial position) and \( \Delta t \) is the time interval. Remember to keep your units consistent, and if additional details like positions or specific distances are provided, plug those numbers in to get your average velocity in meters per second (m/s). If you’re stuck, make sure to double-check the positions at the start and end of your interval; it's a common oversight that can lead to the wrong calculations!

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad