Pregunta
upstudy study bank question image url

If \( \mathrm{N}_{2} \) is added to a balloon that contains 380.0 mmHg of \( \mathrm{O}_{2} \) and 130.0 mmHg of \( \mathrm{CO}_{2} \) to give a total pressure of 950.0 mmHg , what is the partial pressure of each gas in the final mixture? Be sure each of your answer entries has the correct number of significant figures. Part 1 of 3 Part 2 of 3 \( P_{\mathrm{C}_{2}}= \) \( P_{\mathrm{CO}_{2}}= \)

Ask by Tucker Ortega. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The partial pressures are: - \( P_{\text{O}_2} = 380 \) mmHg - \( P_{\text{CO}_2} = 130 \) mmHg - \( P_{\text{N}_2} = 440 \) mmHg

Solución

To find the partial pressure of each gas in the final mixture, we can use the formula for partial pressure: \[ P_{\text{total}} = P_{\text{O}_2} + P_{\text{CO}_2} + P_{\text{N}_2} \] Given: - Total pressure (\( P_{\text{total}} \)) = 950.0 mmHg - Pressure of \( \text{O}_2 \) (\( P_{\text{O}_2} \)) = 380.0 mmHg - Pressure of \( \text{CO}_2 \) (\( P_{\text{CO}_2} \)) = 130.0 mmHg We need to find the partial pressure of \( \text{N}_2 \) (\( P_{\text{N}_2} \)). Let's calculate the partial pressure of \( \text{N}_2 \) first. Calculate the value by following steps: - step0: Calculate: \(950-380-130\) - step1: Subtract the numbers: \(440\) The partial pressure of \( \text{N}_2 \) in the final mixture is 440 mmHg. Now, let's calculate the partial pressure of each gas in the final mixture. Numbers by following steps: - step0: Solution: \(380\) Calculate or simplify the expression \( 130 \). Numbers by following steps: - step0: Solution: \(130\) The partial pressure of \( \text{O}_2 \) in the final mixture is 380 mmHg. The partial pressure of \( \text{CO}_2 \) in the final mixture is 130 mmHg. Therefore, the partial pressure of each gas in the final mixture is: - \( P_{\text{O}_2} = 380 \) mmHg - \( P_{\text{CO}_2} = 130 \) mmHg - \( P_{\text{N}_2} = 440 \) mmHg

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the partial pressure of each gas in the final mixture, we can use Dalton’s Law of Partial Pressures, which states that the total pressure of a gas mixture is equal to the sum of the partial pressures of each individual gas. 1. We have the total pressure after adding \( \mathrm{N}_2 \): \[ P_{\text{total}} = 950.0 \, \text{mmHg} \] 2. The partial pressures before adding \( \mathrm{N}_2 \) are: - \( P_{\mathrm{O}_2} = 380.0 \, \text{mmHg} \) - \( P_{\mathrm{CO}_2} = 130.0 \, \text{mmHg} \) 3. The total pressure from the existing gases before adding \( \mathrm{N}_2 \): \[ P_{\text{existing gases}} = P_{\mathrm{O}_2} + P_{\mathrm{CO}_2} = 380.0 \, \text{mmHg} + 130.0 \, \text{mmHg} = 510.0 \, \text{mmHg} \] 4. The partial pressure of \( \mathrm{N}_2 \): \[ P_{\mathrm{N}_2} = P_{\text{total}} - P_{\text{existing gases}} = 950.0 \, \text{mmHg} - 510.0 \, \text{mmHg} = 440.0 \, \text{mmHg} \] Now we have the partial pressures as follows: \[ P_{\mathrm{O}_2} = 380.0 \, \text{mmHg} \] \[ P_{\mathrm{CO}_2} = 130.0 \, \text{mmHg} \] \[ P_{\mathrm{N}_2} = 440.0 \, \text{mmHg} \] So in summary: \( P_{\mathrm{O}_2} = 380.0 \, \text{mmHg} \) \( P_{\mathrm{CO}_2} = 130.0 \, \text{mmHg} \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad