Pregunta
upstudy study bank question image url

An apartment building has a total of 120 apartments. The equation \( m(p)=5 p \) gives the amount of money made, in hundreds of dollars, when \( p \) apartments are rented. What is the domain for this situation? \( \{m(p) \mid m(p) \leq 600\} \) \( \left\{\begin{array}{|l|}\hline \square\{0,1,2,3, \ldots 120\}\end{array}\right. \) \( \{0,5,10,15,20, \ldots, 600\} \)

Ask by Knight Grant. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The domain is all integers from 0 to 120. **Answer:** \( \{0,1,2,3, \ldots, 120\} \)

Solución

To determine the **domain** for the function \( m(p) = 5p \), where \( p \) represents the number of apartments rented in a building with a total of 120 apartments, consider the following: 1. **Possible Values of \( p \):** - \( p \) must be an integer because you can't rent a fraction of an apartment. - \( p \) can range from 0 (no apartments rented) to 120 (all apartments rented). 2. **Interpreting the Options:** - **Option 1:** \( \{m(p) \mid m(p) \leq 600\} \) This describes the **range** of the function (possible values of \( m(p) \)), not the domain. - **Option 2:** \( \{0, 1, 2, 3, \ldots, 120\} \) This correctly represents the **domain** of \( p \), specifying all possible integer values from 0 to 120. - **Option 3:** \( \{0, 5, 10, 15, 20, \ldots, 600\} \) This also describes the **range** of the function \( m(p) \), as it lists the possible outputs based on the domain. **Conclusion:** The correct domain is the set of integers from 0 to 120, which is represented by the second option. **Answer:** \( \{0,1,2,3, \ldots, 120\} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

In this scenario, we know that there are a total of 120 apartments available, which clearly defines our limits on how many apartments can be rented out. Therefore, the number of rented apartments (\( p \)) can range from 0 (none rented) to 120 (all rented), making the domain \( \{0, 1, 2, \ldots, 120\} \). This straightforward range helps keep track of potential rental income as you scale up or down! To clarify, the equation \( m(p)=5p \) indicates that for every apartment rented, you're making an additional 500 dollars. However, once you exceed renting the full capacity of 120 apartments, the model collapses because you're unable to rent more than that! So, remember, sticking to the domain ensures you're operating within the actual limits of the building!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad