Pregunta

Explain how the probability of two independent events occurring together is calculated.

Ask by Warner Colon. in South Africa
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To find the probability of two independent events both happening, multiply their individual probabilities.

Solución

To calculate the probability of two independent events occurring together, we use the multiplication rule of probability. Here’s a step-by-step explanation: 1. **Understanding Independent Events**: - Two events, \( A \) and \( B \), are considered independent if the occurrence of one event does not affect the occurrence of the other. This means that the probability of event \( A \) happening is the same regardless of whether event \( B \) occurs or not. 2. **Defining Probabilities**: - Let \( P(A) \) be the probability of event \( A \) occurring. - Let \( P(B) \) be the probability of event \( B \) occurring. 3. **Calculating Joint Probability**: - The probability of both events \( A \) and \( B \) occurring together (denoted as \( P(A \cap B) \)) is calculated using the formula: \[ P(A \cap B) = P(A) \times P(B) \] - This formula states that to find the probability of both independent events happening, you multiply their individual probabilities. 4. **Example**: - Suppose the probability of rolling a 3 on a fair six-sided die (event \( A \)) is \( P(A) = \frac{1}{6} \). - The probability of flipping heads on a fair coin (event \( B \)) is \( P(B) = \frac{1}{2} \). - To find the probability of both rolling a 3 and flipping heads, we calculate: \[ P(A \cap B) = P(A) \times P(B) = \frac{1}{6} \times \frac{1}{2} = \frac{1}{12} \] 5. **Conclusion**: - The joint probability of two independent events is simply the product of their individual probabilities. This principle is fundamental in probability theory and is widely used in various applications, including statistics, risk assessment, and decision-making processes.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

When calculating the probability of two independent events happening together, you simply multiply their individual probabilities. For instance, if event A has a probability of 0.5 and event B has a probability of 0.3, then the probability of both A and B occurring is 0.5 * 0.3, which equals 0.15. This means there’s a 15% chance of both events happening at the same time – a nifty little math trick that shows just how easy it can be to combine probabilities! In real life, think of it like flipping a coin and rolling a die. The chance of flipping heads (0.5) while also rolling a four (1/6) is calculated by multiplying those probabilities: 0.5 * (1/6) = approximately 0.0833, or an 8.33% chance! Whether you’re betting on game night or planning a picnic, understanding these odds can help you strategize better.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad