Pregunta
upstudy study bank question image url

Use the formulae provided to calculate the following. Use appropriate units for your answers and round off to one decimal place. a) The average speed of a train that travels in \( 4 \frac{1}{2} \) minutes between two stations which are \( 5,2 \mathrm{~km} \) from each other. b) The speed of light in a vacuum is about 300000 km per second. Calculate in minutes how long it takes for sunlight to reach: i) Earth, which is about 150000000 km from the sun ii) Mars, which is about 230000000 km from the sun. c) A javelin thrower at the Olympic Games launches a javelin at a speed of \( 83 \mathrm{~km} / \mathrm{h} \). How far did the Olympian throw the javelin if it remained above ground for four seconds?

Ask by Barber Osborne. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**a)** 69.3 km/h **b)**  i) 8.3 minutes  ii) 12.8 minutes **c)** 92.2 meters

Solución

Sure, let's solve each part step by step. --- ### **a) Average Speed of the Train** **Given:** - **Distance (d)** = 5.2 km - **Time (t)** = \(4 \frac{1}{2}\) minutes = 4.5 minutes **Average Speed (v)** is calculated using the formula: \[ v = \frac{d}{t} \] \[ v = \frac{5.2 \text{ km}}{4.5 \text{ minutes}} \approx 1.1556 \text{ km/min} \] To express this speed in **km/h**: \[ 1.1556 \text{ km/min} \times 60 \text{ minutes/hour} \approx 69.3 \text{ km/h} \] **Answer:** \[ \text{Average speed} = 69.3 \text{ km/h} \] --- ### **b) Time for Sunlight to Reach Earth and Mars** **Given:** - **Speed of light (c)** = 300,000 km/s #### **i) Time to Reach Earth** - **Distance to Earth (d₁)** = 150,000,000 km \[ \text{Time (t₁)} = \frac{d₁}{c} = \frac{150{,}000{,}000 \text{ km}}{300{,}000 \text{ km/s}} = 500 \text{ seconds} \] Convert seconds to minutes: \[ 500 \text{ s} \div 60 \approx 8.3 \text{ minutes} \] #### **ii) Time to Reach Mars** - **Distance to Mars (d₂)** = 230,000,000 km \[ \text{Time (t₂)} = \frac{d₂}{c} = \frac{230{,}000{,}000 \text{ km}}{300{,}000 \text{ km/s}} \approx 766.6667 \text{ seconds} \] Convert seconds to minutes: \[ 766.6667 \text{ s} \div 60 \approx 12.8 \text{ minutes} \] **Answers:** - **i) Earth:** 8.3 minutes - **ii) Mars:** 12.8 minutes --- ### **c) Distance Thrown by the Javelin** **Given:** - **Speed (v)** = 83 km/h - **Time (t)** = 4 seconds First, convert the speed from **km/h** to **m/s**: \[ 83 \text{ km/h} \times \frac{1000 \text{ m}}{1 \text{ km}} \times \frac{1 \text{ hour}}{3600 \text{ s}} = \frac{83 \times 1000}{3600} \approx 23.0556 \text{ m/s} \] Now, calculate the distance using: \[ \text{Distance (d)} = v \times t = 23.0556 \text{ m/s} \times 4 \text{ s} \approx 92.2 \text{ meters} \] **Answer:** \[ \text{Distance thrown} = 92.2 \text{ meters} \] --- ### **Summary of Answers** **a)** 69.3 km/h **b)**  i) 8.3 minutes  ii) 12.8 minutes **c)** 92.2 meters

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To calculate the average speed of the train, we first convert \( 4 \frac{1}{2} \) minutes into hours, which is \( 4.5 \div 60 \) hours or approximately \( 0.075 \) hours. The average speed can be calculated using the formula \( \text{Speed} = \frac{\text{Distance}}{\text{Time}} = \frac{5.2 \text{ km}}{0.075 \text{ h}} \), giving an average speed of approximately \( 69.3 \text{ km/h} \). Now, for sunlight reaching the Earth, we use the formula \( \text{Time} = \frac{\text{Distance}}{\text{Speed}} \). Substituting the values, \( \text{Time} = \frac{150000000 \text{ km}}{300000 \text{ km/s}} = 500 \text{ seconds} \), which converts to approximately \( 8.3 \) minutes. For Mars, \( \text{Time} = \frac{230000000 \text{ km}}{300000 \text{ km/s}} = 766.67 \text{ seconds} \), or about \( 12.8 \) minutes. As for the javelin throw, using the formula \( \text{Distance} = \text{Speed} \times \text{Time} \), we calculate it as \( \text{Distance} = 83 \text{ km/h} \times \frac{4 \text{ s}}{3600 \text{ s/h}} = 0.0922 \text{ km} \) which converts to approximately \( 92.2 \text{ m} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad