Pregunta

If event A has a probability of \( 0.5 \) and event B has a probability of \( 0.3 \), what is the probability that both events occur?

Ask by Zimmerman Simmons. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that both events A and B occur is 0.15.

Solución

To determine the probability that both events \( A \) and \( B \) occur, we need to consider whether these events are **independent** or **dependent**. 1. **If Events \( A \) and \( B \) Are Independent:** When two events are independent, the occurrence of one does not affect the probability of the other occurring. In this case, the probability that both events \( A \) and \( B \) occur is the product of their individual probabilities. \[ P(A \text{ and } B) = P(A) \times P(B) = 0.5 \times 0.3 = 0.15 \] **Probability:** \( 0.15 \) or \( 15\% \) 2. **If Events \( A \) and \( B \) Are Dependent:** If the events are dependent, the occurrence of one event affects the probability of the other. In such cases, additional information about the relationship between \( A \) and \( B \) (such as conditional probabilities) is required to compute \( P(A \text{ and } B) \). Without this information, we cannot determine the exact probability. **Conclusion:** - **Assuming \( A \) and \( B \) are independent, the probability that both occur is \( 0.15 \) (or 15%).** - **If they are not independent, more information is needed to calculate the probability.** **Final Answer:** Assuming A and B are independent, the probability of both occurring is 0.5 × 0.3 = 0.15

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The probability that both events A and B occur can be found using the formula \( P(A \cap B) = P(A) \times P(B) \) only if events A and B are independent. In this case, that would be \( 0.5 \times 0.3 = 0.15 \). So, there is a 15% chance that both events will occur together! When dealing with probabilities, it’s important to remember that misuse of the independence assumption can lead to incorrect conclusions. Always evaluate whether events influence each other before applying the multiplication rule! Common mistakes include assuming independence without proper justification.

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad