Pregunta
upstudy study bank question image url

Find the Conjugate + Solve (1) \( \frac{6+\sqrt{81}}{2+\sqrt{81}} \) (2) \( \frac{2+\sqrt{2}}{7-\sqrt{2}} \) (3) \( 37+\sqrt{7} \) \( 20+\sqrt{7} \)

Ask by Weston Boyd. in the United States
Jan 29,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

1. \( \frac{6+\sqrt{81}}{2+\sqrt{81}} = \frac{15}{11} \) 2. \( \frac{2+\sqrt{2}}{7-\sqrt{2}} = \frac{16 + 9\sqrt{2}}{47} \) 3. \( 37+\sqrt{7} \approx 39.645751 \) 4. \( 20+\sqrt{7} \approx 22.645751 \)

Solución

Calculate the value by following steps: - step0: Calculate: \(37+\sqrt{7}\) Calculate or simplify the expression \( 20+\sqrt{7} \). Calculate the value by following steps: - step0: Calculate: \(20+\sqrt{7}\) Calculate or simplify the expression \( (6+\sqrt{81})/(2+\sqrt{81}) \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(6+\sqrt{81}\right)}{\left(2+\sqrt{81}\right)}\) - step1: Remove the parentheses: \(\frac{6+\sqrt{81}}{2+\sqrt{81}}\) - step2: Simplify the root: \(\frac{6+9}{2+\sqrt{81}}\) - step3: Simplify the root: \(\frac{6+9}{2+9}\) - step4: Add the numbers: \(\frac{15}{2+9}\) - step5: Add the numbers: \(\frac{15}{11}\) Calculate or simplify the expression \( (2+\sqrt{2})/(7-\sqrt{2}) \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(2+\sqrt{2}\right)}{\left(7-\sqrt{2}\right)}\) - step1: Remove the parentheses: \(\frac{2+\sqrt{2}}{7-\sqrt{2}}\) - step2: Multiply by the Conjugate: \(\frac{\left(2+\sqrt{2}\right)\left(7+\sqrt{2}\right)}{\left(7-\sqrt{2}\right)\left(7+\sqrt{2}\right)}\) - step3: Multiply the numbers: \(\frac{\left(2+\sqrt{2}\right)\left(7+\sqrt{2}\right)}{47}\) - step4: Multiply the numbers: \(\frac{16+9\sqrt{2}}{47}\) Let's solve each expression step by step. ### (1) \( \frac{6+\sqrt{81}}{2+\sqrt{81}} \) First, we simplify the expression: - Calculate \( \sqrt{81} = 9 \). - Substitute this value into the expression: \[ \frac{6 + 9}{2 + 9} = \frac{15}{11} \] Thus, the simplified result is: \[ \frac{15}{11} \quad \text{or} \quad 1\frac{4}{11} \quad \text{or} \quad 1.3636\ldots \] ### (2) \( \frac{2+\sqrt{2}}{7-\sqrt{2}} \) Next, we simplify this expression by multiplying the numerator and denominator by the conjugate of the denominator: - The conjugate of \( 7 - \sqrt{2} \) is \( 7 + \sqrt{2} \). Now, we perform the multiplication: \[ \frac{(2+\sqrt{2})(7+\sqrt{2})}{(7-\sqrt{2})(7+\sqrt{2})} \] Calculating the denominator: \[ (7-\sqrt{2})(7+\sqrt{2}) = 49 - 2 = 47 \] Calculating the numerator: \[ (2+\sqrt{2})(7+\sqrt{2}) = 14 + 2\sqrt{2} + 7\sqrt{2} + 2 = 16 + 9\sqrt{2} \] Putting it all together, we have: \[ \frac{16 + 9\sqrt{2}}{47} \] ### (3) \( 37+\sqrt{7} \) This expression is already in its simplest form. However, we can also provide a numerical approximation: \[ 37 + \sqrt{7} \approx 39.645751 \] ### (4) \( 20+\sqrt{7} \) Similarly, this expression is also in its simplest form, with a numerical approximation: \[ 20 + \sqrt{7} \approx 22.645751 \] ### Summary of Results 1. \( \frac{6+\sqrt{81}}{2+\sqrt{81}} = \frac{15}{11} \) 2. \( \frac{2+\sqrt{2}}{7-\sqrt{2}} = \frac{16 + 9\sqrt{2}}{47} \) 3. \( 37+\sqrt{7} \approx 39.645751 \) 4. \( 20+\sqrt{7} \approx 22.645751 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the conjugate and solve the problems provided: (1) For the expression \( \frac{6+\sqrt{81}}{2+\sqrt{81}} \): First, simplify \( \sqrt{81} \) to get \( 9 \). So, the expression becomes \( \frac{6+9}{2+9} = \frac{15}{11} \). (2) For \( \frac{2+\sqrt{2}}{7-\sqrt{2}} \): Multiply the numerator and denominator by the conjugate of the denominator, \( 7+\sqrt{2} \): \[ \frac{(2+\sqrt{2})(7+\sqrt{2})}{(7-\sqrt{2})(7+\sqrt{2})} = \frac{14 + 2\sqrt{2} + 7\sqrt{2} + 2}{49 - 2} = \frac{16 + 9\sqrt{2}}{47}. \] (3) For \( 37+\sqrt{7} \) and \( 20+\sqrt{7} \): To combine these, note that both have the same surd. So, subtract the second from the first: \[ (37+\sqrt{7}) - (20+\sqrt{7}) = 37 - 20 = 17. \] The results are: 1. \( \frac{15}{11} \) 2. \( \frac{16 + 9\sqrt{2}}{47} \) 3. \( 17 \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad