Responder
1. \( \frac{6+\sqrt{81}}{2+\sqrt{81}} = \frac{15}{11} \)
2. \( \frac{2+\sqrt{2}}{7-\sqrt{2}} = \frac{16 + 9\sqrt{2}}{47} \)
3. \( 37+\sqrt{7} \approx 39.645751 \)
4. \( 20+\sqrt{7} \approx 22.645751 \)
Solución
Calculate the value by following steps:
- step0: Calculate:
\(37+\sqrt{7}\)
Calculate or simplify the expression \( 20+\sqrt{7} \).
Calculate the value by following steps:
- step0: Calculate:
\(20+\sqrt{7}\)
Calculate or simplify the expression \( (6+\sqrt{81})/(2+\sqrt{81}) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\left(6+\sqrt{81}\right)}{\left(2+\sqrt{81}\right)}\)
- step1: Remove the parentheses:
\(\frac{6+\sqrt{81}}{2+\sqrt{81}}\)
- step2: Simplify the root:
\(\frac{6+9}{2+\sqrt{81}}\)
- step3: Simplify the root:
\(\frac{6+9}{2+9}\)
- step4: Add the numbers:
\(\frac{15}{2+9}\)
- step5: Add the numbers:
\(\frac{15}{11}\)
Calculate or simplify the expression \( (2+\sqrt{2})/(7-\sqrt{2}) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\left(2+\sqrt{2}\right)}{\left(7-\sqrt{2}\right)}\)
- step1: Remove the parentheses:
\(\frac{2+\sqrt{2}}{7-\sqrt{2}}\)
- step2: Multiply by the Conjugate:
\(\frac{\left(2+\sqrt{2}\right)\left(7+\sqrt{2}\right)}{\left(7-\sqrt{2}\right)\left(7+\sqrt{2}\right)}\)
- step3: Multiply the numbers:
\(\frac{\left(2+\sqrt{2}\right)\left(7+\sqrt{2}\right)}{47}\)
- step4: Multiply the numbers:
\(\frac{16+9\sqrt{2}}{47}\)
Let's solve each expression step by step.
### (1) \( \frac{6+\sqrt{81}}{2+\sqrt{81}} \)
First, we simplify the expression:
- Calculate \( \sqrt{81} = 9 \).
- Substitute this value into the expression:
\[
\frac{6 + 9}{2 + 9} = \frac{15}{11}
\]
Thus, the simplified result is:
\[
\frac{15}{11} \quad \text{or} \quad 1\frac{4}{11} \quad \text{or} \quad 1.3636\ldots
\]
### (2) \( \frac{2+\sqrt{2}}{7-\sqrt{2}} \)
Next, we simplify this expression by multiplying the numerator and denominator by the conjugate of the denominator:
- The conjugate of \( 7 - \sqrt{2} \) is \( 7 + \sqrt{2} \).
Now, we perform the multiplication:
\[
\frac{(2+\sqrt{2})(7+\sqrt{2})}{(7-\sqrt{2})(7+\sqrt{2})}
\]
Calculating the denominator:
\[
(7-\sqrt{2})(7+\sqrt{2}) = 49 - 2 = 47
\]
Calculating the numerator:
\[
(2+\sqrt{2})(7+\sqrt{2}) = 14 + 2\sqrt{2} + 7\sqrt{2} + 2 = 16 + 9\sqrt{2}
\]
Putting it all together, we have:
\[
\frac{16 + 9\sqrt{2}}{47}
\]
### (3) \( 37+\sqrt{7} \)
This expression is already in its simplest form. However, we can also provide a numerical approximation:
\[
37 + \sqrt{7} \approx 39.645751
\]
### (4) \( 20+\sqrt{7} \)
Similarly, this expression is also in its simplest form, with a numerical approximation:
\[
20 + \sqrt{7} \approx 22.645751
\]
### Summary of Results
1. \( \frac{6+\sqrt{81}}{2+\sqrt{81}} = \frac{15}{11} \)
2. \( \frac{2+\sqrt{2}}{7-\sqrt{2}} = \frac{16 + 9\sqrt{2}}{47} \)
3. \( 37+\sqrt{7} \approx 39.645751 \)
4. \( 20+\sqrt{7} \approx 22.645751 \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución