Consider the function \( y=\sqrt{3 x-12} \) What are the domain and range of this function?
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To determine the domain of the function \( y=\sqrt{3x-12} \), we need to ensure the expression under the square root is non-negative. This means: \[ 3x - 12 \geq 0 \] \[ 3x \geq 12 \] \[ x \geq 4 \] So, the domain is \( [4,\infty) \). Now, for the range, since \( y \) represents a square root function, it will always produce non-negative outputs. The minimum value happens when \( x = 4 \): \[ y = \sqrt{3(4) - 12} = \sqrt{0} = 0 \] As \( x \) increases, \( y \) can approach infinity. Thus, the range is \( [0,\infty) \). In summary, the domain is \( [4, \infty) \) and the range is \( [0, \infty) \).