\( 1 \leftarrow \quad \) For \( f(x)=1-x \) and \( g(x)=2 x^{2}+x+2 \), find the following functions. a. \( (f \circ g)(x) ; \) b. \( (g \circ f)(x) \); c. \( (f \circ g)(3) \); d. \( (g \circ f)(3) \) a. \( (f \circ g)(x)=-2 x^{2}-x-1 \) (Simplify your answer.) b. \( (g \circ f)(x)=\square \) (Simplify your answer.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find \( (g \circ f)(x) \), we need to substitute \( f(x) \) into \( g(x) \). So, we start with: \[ g(f(x)) = g(1 - x) \] Now, substitute \( f(x) = 1 - x \) into \( g(x) = 2x^2 + x + 2 \): \[ g(1 - x) = 2(1 - x)^2 + (1 - x) + 2 \] \[ = 2(1 - 2x + x^2) + (1 - x) + 2 \] \[ = 2 - 4x + 2x^2 + 1 - x + 2 \] \[ = 2x^2 - 5x + 5 \] Thus, b. \( (g \circ f)(x) = 2x^2 - 5x + 5 \). Now, let's evaluate \( (f \circ g)(3) \) and \( (g \circ f)(3) \): For \( (f \circ g)(3) \), we first find \( g(3) \): \[ g(3) = 2(3)^2 + (3) + 2 = 2(9) + 3 + 2 = 18 + 3 + 2 = 23 \] Now, substitute this into \( f \): \[ f(23) = 1 - 23 = -22 \] Therefore, c. \( (f \circ g)(3) = -22 \). Next, let’s find \( (g \circ f)(3) \): We know \( f(3) = 1 - 3 = -2 \). Now we substitute \(-2\) into \( g \): \[ g(-2) = 2(-2)^2 + (-2) + 2 = 2(4) - 2 + 2 = 8 - 2 + 2 = 8 \] Thus, d. \( (g \circ f)(3) = 8 \). In summary: - \( (f \circ g)(x) = -2x^2 - x - 1 \) - \( (g \circ f)(x) = 2x^2 - 5x + 5 \) - \( (f \circ g)(3) = -22 \) - \( (g \circ f)(3) = 8 \)