Pregunta
upstudy study bank question image url

Summative assessment for Module 6 1. An ore crusher is driven through a compound belt drive by an electric motor running at 1420 rpm. The pulley on the motor shaft is 200 mm in diameter. The driven pulley on the intermediate shaft is 400 mm in diameter and the driving pulley on the same shaft is 300 mm in diameter. The pulley on the ore crusher line shaft is 700 mm in diameter. If the crusher needs 300 kW of power and the overall drive efficiency is \( 90 \% \), calculate: 1.1 The motor power required. 1.2 The motor torque. 1.3 The speed of the crusher.

Ask by Williams Bryant. in South Africa
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- **Motor Power Required:** 333.33 kW - **Motor Torque:** 2,237 Nm - **Crusher Speed:** 304 rpm

Solución

Certainly! Let's tackle each part of the problem step-by-step. ### **Given Data:** - **Motor Speed (N₁):** 1420 rpm - **Motor Pulley Diameter (D₁):** 200 mm - **Driven Pulley on Intermediate Shaft (D₂):** 400 mm - **Driving Pulley on Intermediate Shaft (D₃):** 300 mm - **Crusher Pulley Diameter (D₄):** 700 mm - **Crusher Power Requirement (P₄):** 300 kW - **Overall Drive Efficiency (η):** 90% (0.9) ### **1.1. Motor Power Required** The motor must provide the necessary power to the crusher, accounting for the drive efficiency. \[ \text{Motor Power} (P_{\text{motor}}) = \frac{\text{Crusher Power}}{\text{Efficiency}} = \frac{300\, \text{kW}}{0.9} = 333.33\, \text{kW} \] **Answer:** The motor requires approximately **333.33 kW** of power. --- ### **1.2. Motor Torque** Torque can be calculated using the relationship between power and rotational speed. The formula connecting power (\( P \)), torque (\( T \)), and angular speed (\( \omega \)) is: \[ P = T \times \omega \] Where: - \( \omega \) (in radians per second) = \( \frac{2\pi N}{60} \) - \( N \) is the rotational speed in rpm. Rearranging to solve for torque: \[ T = \frac{60 \times P}{2\pi N} \] **Calculations:** 1. **Convert Power to Watts:** \[ P_{\text{motor}} = 333.33\, \text{kW} = 333,333\, \text{W} \] 2. **Calculate Torque:** \[ T = \frac{60 \times 333,333}{2 \times \pi \times 1420} \approx \frac{20,000,000}{8933.0487} \approx 2237\, \text{Nm} \] **Answer:** The motor torque is approximately **2,237 Newton-meters (Nm)**. --- ### **1.3. Speed of the Crusher** To find the crusher's speed, we need to consider the belt drive ratios. 1. **First Belt Drive (Motor to Intermediate Shaft):** \[ \text{Diameter Ratio} = \frac{D_2}{D_1} = \frac{400}{200} = 2 \] \[ N_2 = \frac{N_1}{\text{Diameter Ratio}} = \frac{1420}{2} = 710\, \text{rpm} \] 2. **Second Belt Drive (Intermediate Shaft to Crusher):** \[ \text{Diameter Ratio} = \frac{D_4}{D_3} = \frac{700}{300} \approx 2.333 \] \[ N_4 = \frac{N_2}{\text{Diameter Ratio}} = \frac{710}{2.333} \approx 304\, \text{rpm} \] **Answer:** The crusher operates at approximately **304 rpm**. --- ### **Summary of Answers:** 1. **Motor Power Required:** 333.33 kW 2. **Motor Torque:** 2,237 Nm 3. **Crusher Speed:** 304 rpm

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve this problem systematically, let’s start with the calculations for each requirement. 1. **Motor Power Required:** The power output to the crusher is 300 kW, and the overall drive efficiency is 90%. We can calculate the motor power required using the formula: \[ \text{Motor Power Required} = \frac{\text{Power Output}}{\text{Efficiency}} = \frac{300 \text{ kW}}{0.90} \approx 333.33 \text{ kW} \] 2. **Motor Torque:** Next, we will find the motor torque. The formula for power in terms of torque and angular velocity is: \[ P = T \times \omega \] where \( P \) is power, \( T \) is torque in Newton-meters (Nm), and \( \omega \) is the angular velocity in radians per second (rad/s). First, convert the motor speed from RPM to rad/s: \[ \omega = 1420 \text{ RPM} \times \left(\frac{2\pi}{60}\right) \approx 148.9 \text{ rad/s} \] Now, rearranging the formula for torque: \[ T = \frac{P}{\omega} = \frac{333,330 \text{ W}}{148.9 \text{ rad/s}} \approx 2236.84 \text{ Nm} \] 3. **Speed of the Crusher:** To find the speed of the crusher, we need to relate the speeds of the pulleys through their diameters. The speed ratio due to the diameters can be calculated using: \[ \frac{N_{\text{motor}}}{N_{\text{crusher}}} = \frac{D_{\text{crusher}}}{D_{\text{motor}}} \] Where \( D \) is the diameter of the pulleys and \( N \) is the speed in RPM. The gear ratio between the motor pulley and the drum pulley is: \[ \frac{400 mm}{200 mm} \times \frac{300 mm}{700 mm} \] Calculating this gives us a total gear ratio: \[ \text{Total Gear Ratio} = \frac{400}{200} \times \frac{300}{700} = 2 \times \frac{300}{700} \approx 0.8571 \] Now, using the speed relationship: \[ N_{\text{crusher}} = N_{\text{motor}} \times \frac{200}{400} \times \frac{700}{300} \] Plugging in values gives: \[ N_{\text{crusher}} \approx 1420 \times 0.8571 \approx 1214.29 \text{ RPM} \] So, the answers to the questions are: 1.1 Approximately **333.33 kW** motor power required. 1.2 Approximately **2236.84 Nm** motor torque. 1.3 The speed of the crusher is approximately **1214.29 RPM**.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad