Pregunta
upstudy study bank question image url

Select your answer \( \begin{array}{l}\text { Which of the following is equal to } \log (x y) ? \\ \begin{array}{l}\log (x)+\log (y) \\ \log (x)-\log (y)\end{array} \\ \begin{array}{l}\frac{\log (x)}{\log (y)} \\ \log (y)-\log (y)\end{array} \\ \text { (1 out of } 6)\end{array} \)

Ask by Coles Griffiths. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\(\log(x) + \log(y)\)

Solución

The correct expression equivalent to \( \log(xy) \) is: \[ \log(x) + \log(y) \] **Explanation:** This follows the **product rule of logarithms**, which states that the logarithm of a product is equal to the sum of the logarithms of its factors. Mathematically, this is expressed as: \[ \log(xy) = \log(x) + \log(y) \] **Incorrect Options:** - **\(\log(x) - \log(y)\):** This represents the logarithm of a quotient, \( \log\left(\frac{x}{y}\right) \). - **\(\frac{\log(x)}{\log(y)}\):** This does not correspond to a standard logarithmic identity. - **\(\log(y) - \log(y)\):** This simplifies to 0, which is not equivalent to \( \log(xy) \). **Final Answer:** \[ \log(x) + \log(y) \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

The correct answer is \( \log (x) + \log (y) \). This property is based on the logarithmic identity that states the logarithm of a product is the sum of the logarithms of the individual factors. So, if you have two numbers \( x \) and \( y \), taking the logarithm of their product yields the sum of their logarithms. Fun fact: The roots of logarithmic properties can be traced back to the early 17th century when mathematicians like John Napier and Henry Briggs developed the concept of logarithms as a computational tool. Logarithms revolutionized calculations, making multiplication and division easier by transforming them into addition and subtraction!

Latest Algebra Questions

7. Efectueaza sis scrie rezultatul sub formă de putere: \( \begin{array}{lll}\text { a) } \frac{18}{5} \cdot\left(\frac{18}{5}\right)^{2}= & \text { b) }\left(\frac{6}{5}\right)^{2} \cdot\left(\frac{6}{5}\right)^{3} \cdot \frac{6}{5}= & \text { c) }\left(\frac{19}{5}\right)^{5} \cdot\left(\frac{19}{5}\right)^{16}= \\ \begin{array}{lll}\text { d) } \frac{3}{2} \cdot\left(\frac{3}{2}\right)^{3} \cdot\left(\frac{3}{2}\right)^{0} \cdot\left(\frac{3}{2}\right)^{4}= & \text { e) }\left[\left(\frac{28}{5}\right)^{2}\right]^{3}= & \text { f) }\left[\left(\frac{5}{6}\right)^{6}\right]^{7}= \\ \text { g) }\left[\left(\frac{24}{5}\right)^{2} \cdot\left(\frac{24}{5}\right)^{3}\right]^{8}= & \text { h) }\left[\frac{5}{7} \cdot\left(\frac{5}{7}\right)^{0} \cdot\left(\frac{5}{7}\right)^{4}\right]^{5}= & \text { i) }\left(\frac{29}{10}\right)^{10}:\left(\frac{29}{10}\right)^{7}=\end{array} \\ \left.\left.\begin{array}{lll}\text { j) }\left(\frac{1}{3}\right)^{17}: \frac{1}{3}= & \left.\text { k) }\left(\frac{3}{7}\right)^{11} \cdot\left(\frac{9}{49}\right)^{3}:\left(\frac{3}{7}\right)^{15}=1\right)\end{array}\right]\left(1 \frac{1}{2}\right)^{2}\right]^{8}:\left(\frac{3}{2}\right)^{13}= \\ \text { m) }\left(\frac{9}{10}\right)^{7} \cdot\left(\frac{1}{5}\right)^{7}= & \text { n) }\left(\frac{5}{2}\right)^{10} \cdot\left(\frac{8}{5}\right)^{10}: 2^{10}= & \text { o) } 9^{3} \cdot\left(\frac{7}{10}\right)^{3}:\left(\frac{63}{10}\right)^{3}= \\ \text { p) }\left[\left(\frac{1}{5}\right)^{7}\right]^{2} \cdot 6^{14}:\left(\frac{6}{5}\right)^{14}= & \text { q) }\left(\frac{5}{2}\right)^{7}:\left(\frac{5}{2}\right)^{5}= & \end{array} \)
Álgebra Romania Jan 30, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad