Pregunta
upstudy study bank question image url

Question 1 [6] Given \[ \begin{array}{l} \mathrm{AB}=4,9 \mathrm{~cm}, \mathrm{AD}=8,5 \mathrm{~cm}, \mathrm{AF}=11,8 \mathrm{~cm} \text { and } \mathrm{AH}=13,9 \mathrm{~cm} \\ \mathrm{AC}=5,4 \mathrm{~cm}, \mathrm{AE}=9,4 \mathrm{~cm}, \mathrm{AG}=13 \mathrm{~cm} \text { and } \mathrm{AJ}=15,3 \mathrm{~cm} \\ \mathrm{CB}=2,3 \mathrm{~cm}, \mathrm{ED}=4 \mathrm{~cm}, \mathrm{GF}=5,5 \mathrm{~cm} \text { and } J H=6.4 \mathrm{~cm} \end{array} \] 1.1 Complete the similar triangles by writing the letters of the triangles in the correct order. \( \triangle A B C \) ||| \( \triangle \) \( \qquad \) III \( \triangle \) \( \qquad \) ||| \( \triangle \) \( \qquad \) .2 Why are the four triangles similar to each other? \( \qquad \) 3 Why is it important to write the letters in the correct order when it comes to similarity \( \qquad \) \( \qquad \)

Ask by Paul Pierce. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Question 1** Given the lengths of various segments, we can analyze the similarity of the triangles based on proportional side lengths and corresponding angles. --- **1.1 Complete the similar triangles by writing the letters of the triangles in the correct order.** \[ \triangle ABC \sim \triangle ADE \sim \triangle AFG \sim \triangle AHJ \] **1.2 Why are the four triangles similar to each other?** The triangles are similar because they have equal corresponding angles and proportional corresponding sides, satisfying the AA (Angle-Angle) Similarity Criterion. **1.3 Why is it important to write the letters in the correct order when it comes to similarity?** Writing the letters in the correct order ensures that corresponding angles and sides are matched correctly, which is essential for accurate similarity statements and calculations. **Summary:** - The four triangles are similar because they have equal corresponding angles and proportional sides. - Writing the vertices in the correct order is crucial to ensure accurate correspondence between the triangles' parts.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Mind Expander

The concept of similar triangles dates back to ancient Greece, where mathematicians like Euclid laid the foundations of geometry. Similar triangles maintain the same shape but can differ in size, a principle that has been vital from Greek architecture to Renaissance art. Mathematicians over the centuries have developed strategies to establish similarity, contributing to the geometric understanding we have today! In practical terms, similar triangles are everywhere! Architects use them to create proportionate designs, sailors rely on them for navigation, and engineers apply their principles in construction. By understanding the properties of similar triangles, professionals can solve real-world problems efficiently, whether calculating heights without measuring or optimizing layouts in construction. So, keep your eyes open—you’ll find triangles in all walks of life!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad