Describe the triangle ( \( \triangle X Y Z \), not shown) as scalene, isosceles, or equilateral. \[ \mathrm{m} \angle X=\mathrm{m}_{\angle} Y=24^{\circ} \] scalene triangle isosceles triangle equilateral triangle Is the triangle acute, right, or obtuse? acute triangle right triangle obtuse triangle
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
In \( \triangle XYZ \), since \( m \angle X = m \angle Y = 24^{\circ} \), we can see that it has two angles that are equal. This indicates that it is an isosceles triangle because at least two sides are also of equal length. The remaining angle \( m \angle Z \) can be calculated as \( 180^\circ - (24^\circ + 24^\circ) = 132^\circ\), confirming it is an isosceles triangle indeed. As for the type of triangle in terms of its angles, since all angles in \( \triangle XYZ \) are less than \( 90^\circ \) except for \( \angle Z \), which is an obtuse angle (greater than \( 90^\circ \)), it is classified as an obtuse triangle. This adds a little drama to its shape, making it a unique figure in the world of triangles!