Pregunta
upstudy study bank question image url

Find the zeros for the polynomial function and give the multiplicity for each zero. State whether the graph crosses the \( x \)-axis or touches the \( x \)-axis and tums around at each zero \( f(x)=5(x-6)(x-1)^{2} \) Determine the zero(s) The zero(s) is/are 1.6 (Type integers or decimals. Use a comma to separate answers as needed) Determine the multiplicities of the zero(s). Select the correct choice below and, if necessary, fill in the answer box(es) within your choice A. There are three zeros The multiplicity of the largest zero is The multiplicity of the other zero is (Simplify your answers ) B. There are two zeros The multipliplicitity of the the smallest zero is (Simplify your answers ) C. There is one zero The multiplicity of the zero is 2 . The multiplicity of the smallest zero is 112 points (Simplity your answer )

Ask by Gonzalez Pope. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The zeros are 1 and 6. The zero at 1 has a multiplicity of 2, and the zero at 6 has a multiplicity of 1.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Mind Expander

To find the zeros of the polynomial function \( f(x) = 5(x-6)(x-1)^{2} \), we set each factor equal to zero. The first factor yields the zero \( x = 6 \), while the second factor gives \( x = 1 \). Thus, the zeros are \( 1 \) and \( 6 \). Next, we analyze the multiplicities. The factor \( (x - 1)^2 \) indicates that \( 1 \) has a multiplicity of \( 2 \) (it is repeated), while the factor \( (x - 6) \) indicates that \( 6 \) has a multiplicity of \( 1 \). Therefore, there are two distinct zeros: \( 1 \) (multiplicity 2) and \( 6 \) (multiplicity 1). At the zero \( x = 1 \), since the multiplicity is even, the graph touches the \( x \)-axis and turns around. At the zero \( x = 6 \), where the multiplicity is odd, the graph crosses the \( x \)-axis. 0, 6 (Type integers or decimals. Use a comma to separate answers as needed) There are two zeros. The multiplicity of the smallest zero is 2. The multiplicity of the largest zero is 1. When you're grappling with polynomial functions like this, it’s crucial to understand that the multiplicity of a zero influences the graph's behavior significantly. Even multiplicities create a "bounce" off the x-axis, while odd multiplicities allow the graph to pass through, quite literally crossing the line! Remember to sketch a quick graph as these properties can help visualize the function's behavior. Taking a closer look at polynomials and their properties can also be magically fascinating! You might want to dive into books or resources on polynomial functions, factoring techniques, and even calculus topics around derivatives and their relationships to polynomial graphs. It’s a journey, and each step can open up more exciting mathematical mysteries!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad