Pregunta
Question Determine if the expression \( -\frac{7}{m^{3}} \) is a polynomial or not. If it is a polynomial, state the type and degree of the polynomial. Answer Attempt 1 out of 2 The given expression Submit Answer
Ask by Lewis Bob. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The expression \( -\frac{7}{m^{3}} \) is not a polynomial because it contains a negative exponent.
Solución
To determine whether the expression \( -\frac{7}{m^{3}} \) is a polynomial, let's review the definition of a polynomial:
**Definition of a Polynomial:**
A polynomial in one variable \( m \) is an expression of the form:
\[ a_n m^n + a_{n-1} m^{n-1} + \dots + a_1 m + a_0 \]
where:
- \( a_n, a_{n-1}, \dots, a_0 \) are constants (coefficients).
- \( n \) is a non-negative integer representing the degree of the polynomial.
**Analyzing the Given Expression:**
\[ -\frac{7}{m^{3}} \]
This can be rewritten using negative exponents:
\[ -7m^{-3} \]
**Key Points:**
1. **Exponents:** In a polynomial, the exponents of the variable must be non-negative integers (0, 1, 2, 3, ...). Here, the exponent is \(-3\), which is negative.
2. **Form:** The presence of a negative exponent indicates that the variable is in the denominator, which violates the polynomial definition.
**Conclusion:**
Since the expression \( -\frac{7}{m^{3}} \) involves a negative exponent, it **does not** qualify as a polynomial.
**Final Answer:**
The expression \( -\frac{7}{m^{3}} \) is **not** a polynomial because it includes a negative exponent.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
The given expression \( -\frac{7}{m^{3}} \) is not a polynomial. In a polynomial expression, the exponents of the variable must be non-negative integers (0, 1, 2, etc.). Here, the exponent of \( m \) is -3, which violates this rule. To clarify, polynomials can include structures like \( 2m^2 + 3m + 5 \), where all exponents are whole numbers. Intervals where negative exponents are involved are typically treated within a different realm of mathematics involving rational functions, not polynomials.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium