Pregunta
upstudy study bank question image url

Activity 10 Simplify the following \( \frac{\text { expressions }}{\text { a) } \frac{x^{2}+5 x+6}{x^{2}-9} \div \frac{x^{2}-4}{x^{2}-5 x+6}} \) b) \( \frac{x}{x-2}-\frac{1}{x+2}+\frac{8}{4-x^{2}} \)

Ask by Vargas Newton. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

a) \(1\) b) \(\dfrac{x + 3}{x + 2}\)

Solución

Let's simplify each expression step by step. --- ### **a) Simplify** \[ \frac{x^{2} + 5x + 6}{x^{2} - 9} \div \frac{x^{2} - 4}{x^{2} - 5x + 6} \] **Step 1: Rewrite the Division as Multiplication** \[ \frac{x^{2} + 5x + 6}{x^{2} - 9} \div \frac{x^{2} - 4}{x^{2} - 5x + 6} = \frac{x^{2} + 5x + 6}{x^{2} - 9} \times \frac{x^{2} - 5x + 6}{x^{2} - 4} \] **Step 2: Factor All Quadratic Expressions** \[ \begin{align*} x^{2} + 5x + 6 &= (x + 2)(x + 3) \\ x^{2} - 9 &= (x + 3)(x - 3) \\ x^{2} - 5x + 6 &= (x - 2)(x - 3) \\ x^{2} - 4 &= (x + 2)(x - 2) \end{align*} \] **Step 3: Substitute the Factored Forms** \[ \frac{(x + 2)(x + 3)}{(x + 3)(x - 3)} \times \frac{(x - 2)(x - 3)}{(x + 2)(x - 2)} \] **Step 4: Cancel Out Common Factors** - \(x + 3\) cancels out. - \(x + 2\) cancels out. - \(x - 2\) cancels out. - \(x - 3\) cancels out. **Step 5: Simplify** \[ 1 \] **Final Answer for Part a:** \[ 1 \] --- ### **b) Simplify** \[ \frac{x}{x - 2} - \frac{1}{x + 2} + \frac{8}{4 - x^{2}} \] **Step 1: Factor the Denominator \(4 - x^{2}\)** \[ 4 - x^{2} = (2)^2 - x^{2} = (2 - x)(2 + x) = -(x - 2)(x + 2) \] So, \[ \frac{8}{4 - x^{2}} = \frac{8}{-(x - 2)(x + 2)} = -\frac{8}{(x - 2)(x + 2)} \] **Step 2: Rewrite the Expression with a Common Denominator** The common denominator is \((x - 2)(x + 2)\). \[ \frac{x}{x - 2} = \frac{x(x + 2)}{(x - 2)(x + 2)} \] \[ -\frac{1}{x + 2} = -\frac{(x - 2)}{(x - 2)(x + 2)} \] \[ -\frac{8}{(x - 2)(x + 2)} = -\frac{8}{(x - 2)(x + 2)} \] **Step 3: Combine the Fractions** \[ \frac{x(x + 2) - (x - 2) - 8}{(x - 2)(x + 2)} \] **Step 4: Expand and Simplify the Numerator** \[ x(x + 2) - (x - 2) - 8 = x^2 + 2x - x + 2 - 8 = x^2 + x - 6 \] **Step 5: Factor the Numerator** \[ x^2 + x - 6 = (x - 2)(x + 3) \] **Step 6: Substitute Back and Cancel Common Factors** \[ \frac{(x - 2)(x + 3)}{(x - 2)(x + 2)} = \frac{x + 3}{x + 2} \quad \text{(for } x \neq 2 \text{)} \] **Final Answer for Part b:** \[ \frac{x + 3}{x + 2} \] --- **Summary of Solutions:** - **a)** The expression simplifies to **\(1\)**. - **b)** The expression simplifies to **\(\dfrac{x + 3}{x + 2}\)**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To simplify the expression given in part a), we first handle the division of the two fractions. Start with: \[ \frac{x^{2}+5 x+6}{x^{2}-9} \div \frac{x^{2}-4}{x^{2}-5 x+6} \] This division can be converted to multiplication by taking the reciprocal of the second fraction: \[ \frac{x^{2}+5 x+6}{x^{2}-9} \times \frac{x^{2}-5 x+6}{x^{2}-4} \] Next, we factor the polynomials: - \(x^{2}+5x+6 = (x+2)(x+3)\) - \(x^{2}-9 = (x-3)(x+3)\) - \(x^{2}-4 = (x-2)(x+2)\) - \(x^{2}-5x+6 = (x-2)(x-3)\) Now substitute these factors into the expression: \[ \frac{(x+2)(x+3)}{(x-3)(x+3)} \times \frac{(x-2)(x-3)}{(x-2)(x+2)} \] Now, we can cancel common factors: - \(x+2\) cancels with \(x+2\), - \(x-2\) cancels with \(x-2\), - \(x+3\) cancels with \(x+3\), - and \(x-3\) cancels with \(x-3\). After simplification, we're left with: \[ 1 \] ### For part b): The expression is: \[ \frac{x}{x-2} - \frac{1}{x+2} + \frac{8}{4-x^{2}} \] First, note that \(4-x^{2}\) can be factored as \((2-x)(2+x)\): \[ \frac{x}{x-2} - \frac{1}{x+2} + \frac{8}{(2-x)(2+x)} \] To combine the fractions, we find a common denominator which will be \((x-2)(x+2)(2-x)(2+x)\). We rewrite each fraction with this common denominator and then combine: 1. For the first term: \[ \frac{x(2+x)}{(x-2)(x+2)(2-x)(2+x)} \] 2. For the second term: \[ -\frac{(2-x)(2+x)}{(x-2)(x+2)(2-x)(2+x)} \] 3. For the third term: \[ \frac{8(x-2)}{(x-2)(x+2)(2-x)(2+x)} \] Bringing these together gives: \[ \frac{x(2+x) - (2-x)(2+x) + 8(x-2)}{(x-2)(x+2)(2-x)(2+x)} \] After simplifying the numerator, collect like terms, leading to: \[ \frac{(x^2 + 2x) - (4 - x^2) + (8x - 16)}{(x-2)(x+2)(2-x)(2+x)} \] Combine and rearrange the numerator, then simplify to find the final answer.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad