Pregunta
upstudy study bank question image url

rcise: Define the following expressions on CAS, then use the solve function to find when \( f(x)=g(x) \) \[ \begin{aligned} f(x)=\frac{1}{2} x+1 \\ g(x)=5-2 x\end{aligned} \]

Ask by Floyd Moran. in Australia
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To find when \( f(x) = g(x) \), set \( \frac{1}{2}x + 1 = 5 - 2x \) and solve for \( x \). The solution is \( x = \frac{8}{5} \).

Solución

To determine when the functions \( f(x) \) and \( g(x) \) are equal, you can use a Computer Algebra System (CAS) to define the expressions and solve for \( x \). Here's a step-by-step guide on how to achieve this: ### 1. Define the Functions First, define the two functions \( f(x) \) and \( g(x) \) in your CAS environment. The definitions based on your expressions are: \[ \begin{aligned} f(x) &= \frac{1}{2}x + 1 \\ g(x) &= 5 - 2x \end{aligned} \] ### 2. Set the Functions Equal to Each Other To find the value of \( x \) for which \( f(x) = g(x) \), set the two expressions equal: \[ \frac{1}{2}x + 1 = 5 - 2x \] ### 3. Solve for \( x \) Using the `Solve` Function Use the `solve` function to find the value of \( x \) that satisfies the equation. Below is how you can perform this in different CAS environments: #### **a. Using Mathematica** ```mathematica (* Define the functions *) f[x_] := (1/2) x + 1 g[x_] := 5 - 2 x (* Set f(x) equal to g(x) and solve for x *) solution = Solve[f[x] == g[x], x] ``` **Output:** ```mathematica {{x -> 8/5}} ``` #### **b. Using SymPy (Python Library)** ```python from sympy import symbols, Eq, solve # Define the variable x = symbols('x') # Define the functions f_x = (1/2)*x + 1 g_x = 5 - 2*x # Set up the equation f(x) = g(x) equation = Eq(f_x, g_x) # Solve for x solution = solve(equation, x) print(solution) ``` **Output:** ``` [8/5] ``` #### **c. Using TI Calculators (e.g., TI-89)** 1. **Define the Functions:** - Press the `Y=` button. - Enter `0.5x + 1` for \( Y_1 \). - Enter `5 - 2x` for \( Y_2 \). 2. **Find the Intersection:** - Press the `2nd` button, then `Calc` (above the `Trace` button). - Choose `5: intersect`. - Select the two functions you've defined. - Press `Enter` to get the solution. **Output:** ``` x = 8/5 ``` ### 4. Interpretation of the Solution The solution \( x = \frac{8}{5} \) (or \( x = 1.6 \)) indicates the point where \( f(x) \) and \( g(x) \) intersect. To confirm, you can substitute \( x = \frac{8}{5} \) back into both functions: \[ \begin{aligned} f\left(\frac{8}{5}\right) &= \frac{1}{2} \left(\frac{8}{5}\right) + 1 = \frac{4}{5} + 1 = \frac{9}{5} \\ g\left(\frac{8}{5}\right) &= 5 - 2 \left(\frac{8}{5}\right) = 5 - \frac{16}{5} = \frac{25}{5} - \frac{16}{5} = \frac{9}{5} \end{aligned} \] Both functions evaluate to \( \frac{9}{5} \) when \( x = \frac{8}{5} \), confirming the solution. ### 5. Graphical Interpretation Plotting both functions on the same graph will show that they intersect at the point \( \left(\frac{8}{5}, \frac{9}{5}\right) \). --- **Summary:** By defining the functions \( f(x) = \frac{1}{2}x + 1 \) and \( g(x) = 5 - 2x \) in a CAS and using the `solve` function to set them equal, we find that \( f(x) = g(x) \) when \( x = \frac{8}{5} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To define the functions on a Computer Algebra System (CAS), you would typically input them like this: ``` f(x) := (1/2)*x + 1 g(x) := 5 - 2*x ``` Next, to find the intersection point where \( f(x) = g(x) \), you would set the two functions equal to each other and utilize the solve function: ``` solve(f(x) = g(x), x) ``` When you execute this, the CAS will give you the value of \( x \) where the two functions intersect, which you can then substitute back into either of the equations to find the corresponding \( y \) value! It’s like finding the hidden treasure where two paths meet!

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad