Pregunta
If \( \quad 5 x+5=92 \) Delemine whether 17 is a solution of the equation
Ask by Flynn Howell. in the United States
Jan 26,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( x = 17 \) is not a solution to the equation \( 5x + 5 = 92 \).
Solución
To determine whether \( x = 17 \) is a solution to the equation \( 5x + 5 = 92 \), we'll substitute \( x \) with 17 and check if the equation holds true.
**Step 1: Substitute \( x = 17 \) into the equation**
\[
5(17) + 5 = 85 + 5 = 90
\]
**Step 2: Compare the result with the right-hand side of the equation**
\[
90 \neq 92
\]
Since \( 90 \) does not equal \( 92 \), \( x = 17 \) is **not** a solution to the equation.
**Additional Verification: Solve for \( x \) to find the exact solution**
\[
5x + 5 = 92
\]
Subtract 5 from both sides:
\[
5x = 92 - 5
\]
\[
5x = 87
\]
Divide both sides by 5:
\[
x = \frac{87}{5} = 17.4
\]
So, the correct solution is \( x = 17.4 \), not 17.
**Conclusion:** \( x = 17 \) is **not** a solution to the equation \( 5x + 5 = 92 \).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To check if 17 is a solution to the equation \( 5x + 5 = 92 \), substitute \( x \) with 17. First, calculate: \[ 5(17) + 5 = 85 + 5 = 90 \] Since 90 does not equal 92, we conclude that 17 is not a solution to the equation \( 5x + 5 = 92 \). Now, let’s solve the equation properly: \[ 5x + 5 = 92 \] Subtract 5 from both sides: \[ 5x = 87 \] Now, divide by 5 to find \( x \): \[ x = \frac{87}{5} = 17.4 \] So the actual solution is \( x = 17.4 \), confirming that 17 is indeed not a solution!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium