Pregunta
upstudy study bank question image url

Consider the system: \( \begin{array}{l}2 x-5 y=18 \\ 8 x+y=10\end{array} \) You decide to use the addition method to solve this system. Which of the following steps would you take to eliminate \( y \) ? a.) Multiply the first equation by 4 , then add to the second equation. b.) Multiply the second equation by 5 , then add to the first equation. c.) Multiply the first equation by -4 , then add to the second equation. d.) Multiply the second equation by -5 , then add to the first equation.

Ask by Wells Byrd. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To eliminate \( y \), multiply the second equation by 5 and then add it to the first equation.

Solución

To eliminate \( y \) using the addition method, you want to make the coefficients of \( y \) in both equations opposites so that they cancel each other out when the equations are added. Let's analyze the given system: \[ \begin{align*} \text{Equation 1:} \quad & 2x - 5y = 18 \\ \text{Equation 2:} \quad & 8x + y = 10 \end{align*} \] **Step-by-Step Reasoning:** 1. **Identify the Coefficients of \( y \):** - In Equation 1, the coefficient of \( y \) is \(-5\). - In Equation 2, the coefficient of \( y \) is \(1\). 2. **Determine the Multipliers to Make the Coefficients Opposite:** - To eliminate \( y \), you can multiply Equation 2 by \(5\) so that the coefficient of \( y \) becomes \(5\). 3. **Apply the Multiplier:** - Multiply Equation 2 by \(5\): \[ 5 \times (8x + y) = 5 \times 10 \implies 40x + 5y = 50 \] 4. **Add the Modified Equations:** - Add Equation 1 and the modified Equation 2: \[ \begin{align*} (2x - 5y) + (40x + 5y) &= 18 + 50 \\ 42x &= 68 \\ x &= \frac{68}{42} = \frac{34}{21} \end{align*} \] - Here, \( y \) is eliminated as the \( -5y \) and \( 5y \) cancel each other out. **Conclusion:** The correct step to eliminate \( y \) is: **Answer:** **b.) Multiply the second equation by 5, then add to the first equation.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To eliminate \( y \) using the addition method, you need to make the coefficients of \( y \) the same in both equations but with opposite signs. The first equation is \( 2x - 5y = 18 \) and the second equation is \( 8x + y = 10 \). To achieve this, you can multiply the second equation by 5, which gives \( 40x + 5y = 50 \). This will allow both equations to have \( -5y \) and \( +5y \). Therefore, the correct step is: b.) Multiply the second equation by 5, then add to the first equation. This will successfully eliminate \( y \) when you add the two equations together. Happy solving! Additionally, if you had considered multiplying the first equation by 4, you'd get \( 8x - 20y = 72 \). While this would work, it’s certainly less straightforward than using the method proposed. So, always look for the simplest manipulation when choosing your strategy. Good luck with your calculations!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad