Pregunta
upstudy study bank question image url

Workers at a wildlife center plan a new habitat for meerkat The habitat must include at least \( 6.5 \mathrm{~m}^{2} \) of space for each meerkat. The area of the habitat is \( 78 \mathrm{~m}^{2} \). How many meerkats can the habitat hold? Write, solve, and graph an inequality to find the'possible numbers.of.meerkats. Show your work.

Ask by Blake May. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The habitat can hold up to 12 meerkats.

Solución

To determine how many meerkats the habitat can accommodate, we'll set up and solve an inequality based on the given information. ### **Given:** - **Total Habitat Area:** \( 78 \, \text{m}^2 \) - **Space Requirement per Meerkat:** \( 6.5 \, \text{m}^2 \) ### **Let:** - \( n \) = number of meerkats ### **Step 1: Set Up the Inequality** Each meerkat requires at least \( 6.5 \, \text{m}^2 \) of space. Therefore, for \( n \) meerkats, the total space required is \( 6.5n \, \text{m}^2 \). Since the habitat must accommodate **at least** \( 6.5 \, \text{m}^2 \) per meerkat, the total required space should be **less than or equal to** the available habitat area. \[ 6.5n \leq 78 \] ### **Step 2: Solve the Inequality** To find the maximum number of meerkats the habitat can hold, solve for \( n \): \[ 6.5n \leq 78 \] Divide both sides by 6.5: \[ n \leq \frac{78}{6.5} \] \[ n \leq 12 \] ### **Conclusion:** The habitat can accommodate **up to 12 meerkats**. ### **Step 3: Graph the Inequality** We'll graph the inequality \( n \leq 12 \) on a number line to represent the possible number of meerkats. ![Number Line Graph](https://i.imgur.com/yourimagelink.png) *Since I can't create images directly, here's a description of the graph:* 1. **Draw a horizontal line** and mark points from 0 to 15 (for clarity). 2. **Highlight the region** from 0 up to and including 12. 3. **Use a closed circle** at \( n = 12 \) to indicate that 12 meerkats are allowed. ``` Number of Meerkats (n) 0 ———————•——————————•———————> 6 12 15 ``` - The **closed dot** at \( n = 12 \) signifies that 12 is included in the solution. - The **arrow** points to the left of 12, indicating all numbers less than or equal to 12 are valid. ### **Final Answer:** The habitat can hold **up to 12 meerkats**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine how many meerkats can be accommodated in the habitat, we can set up an inequality based on the given area requirements. Let \( x \) represent the number of meerkats. Each meerkat requires \( 6.5 \mathrm{~m}^{2} \), so the total area needed for \( x \) meerkats is \( 6.5x \). Given that the total area of the habitat is \( 78 \mathrm{~m}^{2} \), we can write the inequality: \[ 6.5x \leq 78 \] Now, to solve for \( x \), we divide both sides of the inequality by \( 6.5 \): \[ x \leq \frac{78}{6.5} \\ x \leq 12 \] Thus, the habitat can hold a maximum of 12 meerkats. To graph this inequality, you would draw a number line and mark the point 12. Since the inequality is "less than or equal to," you would shade everything to the left of 12, including the point 12 itself (often represented with a closed circle). So, the solution is \( x \) can be any whole number from 0 up to 12 meerkats. Now, let's summarize the key points: - **Number of meerkats that can fit**: 12. - **Graph**: A number line showing all integer values from 0 to 12, closed at 12. ### Problem-Solving Tips & Common Mistakes: When working with inequalities, a common mistake is to incorrectly change the direction of the inequality sign while solving. Remember that you only reverse the inequality when you multiply or divide by a negative number! Also, always pay attention to units; make sure that your measurements are consistent. ### Real-World Application: Understanding how to efficiently calculate space requirements has real-world implications in wildlife conservation and habitat management. By ensuring adequate living space for animals, wildlife centers can promote healthier, happier animals that thrive in their environments. Whether designing new habitats or optimizing existing ones for animal care, these calculations help ensure the well-being of precious wildlife!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad