Pregunta
upstudy study bank question image url

1. Bodie drew a triangle. The base of his triangle is \( \frac{1}{2} \) the height of the triangle. Let \( h= \) height. Let \( b= \) base. Graph \( b=\frac{h}{2} \).

Ask by Ryan Turner. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To graph the equation \( b = \frac{h}{2} \), plot points where the base \( b \) is half the height \( h \). For example, when \( h = 2 \), \( b = 1 \). Draw a straight line through these points to represent the relationship between the base and height of the triangle.

Solución

Certainly! Let's graph the equation \( b = \frac{h}{2} \), where: - \( h \) represents the **height** of the triangle. - \( b \) represents the **base** of the triangle. ### Understanding the Equation The equation \( b = \frac{h}{2} \) shows a linear relationship between the base and the height of the triangle. For every unit increase in height, the base increases by half a unit. ### Steps to Graph \( b = \frac{h}{2} \) 1. **Choose a Coordinate System:** - **Horizontal Axis (X-axis):** Base (\( b \)) - **Vertical Axis (Y-axis):** Height (\( h \)) 2. **Create a Table of Values:** | Height (\( h \)) | Base (\( b = \frac{h}{2} \)) | |------------------|-------------------------------| | 0 | 0 | | 2 | 1 | | 4 | 2 | | 6 | 3 | | 8 | 4 | | 10 | 5 | 3. **Plot the Points:** | \( b \) (Base) | \( h \) (Height) | |----------------|------------------| | 0 | 0 | | 1 | 2 | | 2 | 4 | | 3 | 6 | | 4 | 8 | | 5 | 10 | 4. **Draw the Line:** - Connect the plotted points with a straight line. - Extend the line in both directions for a complete graph. ### Visual Representation Here's a simplified **ASCII** representation of the graph: ``` Height (h) | 10 | * 9 | 8 | * 7 | 6 | * 5 | 4 | * 3 | 2 | * 1 | 0 |_______________________________ Base (b) 0 1 2 3 4 5 ``` - Each `*` represents a plotted point from the table. - The line connecting these points illustrates the relationship \( b = \frac{h}{2} \). ### Graph Interpretation - **Slope:** The slope of the line is \( \frac{1}{2} \), indicating that for every increase of 2 units in height, the base increases by 1 unit. - **Intercept:** The graph passes through the origin (0,0), meaning when the height is 0, the base is also 0. ### Practical Example Suppose you have a triangle with a height of 6 units: \[ b = \frac{6}{2} = 3 \text{ units} \] On the graph, this corresponds to the point (3, 6), which lies on the line \( b = \frac{h}{2} \). ### Using Graphing Tools For a more precise graph, you can use graphing tools or software such as: - **Desmos:** [https://www.desmos.com/calculator](https://www.desmos.com/calculator) - **GeoGebra:** [https://www.geogebra.org/graphing](https://www.geogebra.org/graphing) - **Microsoft Excel or Google Sheets:** Utilize their charting features to plot the points and draw the line. ### Conclusion Graphing \( b = \frac{h}{2} \) provides a clear visual representation of how the base and height of Bodie's triangle are related. By understanding this relationship, you can easily determine one dimension when the other is known.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To graph the equation \( b = \frac{h}{2} \), start by recognizing that this represents a linear relationship where the base \( b \) is half of the height \( h \). You can plot points by choosing values for \( h \): - If \( h = 0 \), then \( b = 0 \). - If \( h = 2 \), then \( b = 1 \). - If \( h = 4 \), then \( b = 2 \). - If \( h = 6 \), then \( b = 3 \). Plot these points on a coordinate system where the x-axis represents the height \( h \) and the y-axis represents the base \( b \). Connect the points to create a straight line that passes through the origin, indicative of the fact that as the height increases, so does the base proportionally. This visual representation can help in understanding the relationship between the height and the base of Bodie's triangle, showcasing linear growth!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad