Pregunta
A radioactive material decays according to the function
, where
is the initial amount present and
is the amount present at time
(in years). Assume that a scientist has a sample of 500 grams of the radioactive
material.
(a) What is the decay rate of the radioactive material?
(b) Graph the function using a graphing utility.
© How much radioactive material is left after 30 years?
(d) When will only 400 grams of the radioactive material be left?
(e) What is the halt-life of the radioactive material?
is the amount present at time
material.
(a) What is the decay rate of the radioactive material?
(b) Graph the function using a graphing utility.
© How much radioactive material is left after 30 years?
(d) When will only 400 grams of the radioactive material be left?
(e) What is the halt-life of the radioactive material?
Ask by Mathis Frazier. in the United States
Jan 22,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
Decay Rate: 0.0244 per year
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Extra Insights
The decay rate of this radioactive material is represented by the exponent in the decay function
, which is approximately 2.44% per year. This means that each year, around 2.44% of the radioactive material is lost due to decay, providing a predictable decline in its quantity.
After 30 years, the amount of radioactive material left can be calculated using the formula
. Plugging in the numbers gives us approximately 500 grams at the start but decaying down to roughly 110.69 grams after three decades, showcasing just how quickly radioactive materials can diminish over time!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium