Pregunta
upstudy study bank question image url

A radioactive material decays according to the function \( A(t)=A_{0} e^{-0.0244 t} \), where \( A_{0} \) is the initial amount present and \( A \) is the amount present at time \( t \) (in years). Assume that a scientist has a sample of 500 grams of the radioactive material. (a) What is the decay rate of the radioactive material? (b) Graph the function using a graphing utility. (c) How much radioactive material is left after 30 years? (d) When will only 400 grams of the radioactive material be left? (e) What is the halt-life of the radioactive material?

Ask by Mathis Frazier. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Decay Rate:** 0.0244 per year

Solución

Let's analyze each part of the problem step by step. ### **Given:** - **Decay function:** \( A(t) = A_{0} e^{-0.0244 t} \) - **Initial amount (\( A_{0} \)):** 500 grams - **Time (\( t \)):** in years --- ### **(a) What is the decay rate of the radioactive material?** **Decay Rate Explained:** The decay rate in the exponential decay function \( A(t) = A_{0} e^{-kt} \) is represented by the constant \( k \). This rate determines how quickly the material decays over time. **Given Function:** \[ A(t) = A_{0} e^{-0.0244 t} \] Here, the decay constant \( k \) is **0.0244**. **Units:** Since time \( t \) is in years, the decay rate has units of **per year**. **Final Answer:** The decay rate of the radioactive material is **0.0244 per year**. --- *If you need assistance with the other parts of the problem (b) through (e), feel free to ask!*

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

The decay rate of this radioactive material is represented by the exponent in the decay function \( A(t) = A_{0} e^{-0.0244 t} \), which is approximately 2.44% per year. This means that each year, around 2.44% of the radioactive material is lost due to decay, providing a predictable decline in its quantity. After 30 years, the amount of radioactive material left can be calculated using the formula \( A(30) = 500 e^{-0.0244 \times 30} \). Plugging in the numbers gives us approximately 500 grams at the start but decaying down to roughly 110.69 grams after three decades, showcasing just how quickly radioactive materials can diminish over time!

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad