Pregunta
upstudy study bank question image url

4. \( 3 x^{2}-3 x-16 \) 8. \( 5 x^{2}+35 x+50 \)

Ask by Smith Reeves. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**4. \( 3x^{2} - 3x - 16 \) does not factor neatly over integers. Its roots are \( x = \frac{3 \pm \sqrt{201}}{6} \).** **8. \( 5x^{2} + 35x + 50 = 5(x + 2)(x + 5) \).**

Solución

Sure, let's factor each of the given quadratic expressions. --- ### **4. \( 3x^{2} - 3x - 16 \)** To factor the quadratic expression \( 3x^{2} - 3x - 16 \), we'll look for two numbers that multiply to \( 3 \times (-16) = -48 \) and add up to \( -3 \). **Step 1:** Identify two numbers whose product is \(-48\) and whose sum is \(-3\). After checking possible pairs, there are no integer pairs that satisfy both conditions. Therefore, the quadratic does not factor neatly over the integers. **Step 2:** Use the **Quadratic Formula** to find the roots: \[ x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} \] For the equation \( 3x^{2} - 3x - 16 = 0 \): - \( a = 3 \) - \( b = -3 \) - \( c = -16 \) \[ x = \frac{-(-3) \pm \sqrt{(-3)^{2} - 4 \times 3 \times (-16)}}{2 \times 3} \] \[ x = \frac{3 \pm \sqrt{9 + 192}}{6} \] \[ x = \frac{3 \pm \sqrt{201}}{6} \] **Conclusion:** The expression does not factor neatly over integers and its roots are: \[ x = \frac{3 + \sqrt{201}}{6} \quad \text{and} \quad x = \frac{3 - \sqrt{201}}{6} \] --- ### **8. \( 5x^{2} + 35x + 50 \)** To factor the quadratic expression \( 5x^{2} + 35x + 50 \), follow these steps: **Step 1:** Factor out the greatest common factor (GCF) from all terms. \[ 5x^{2} + 35x + 50 = 5(x^{2} + 7x + 10) \] **Step 2:** Factor the quadratic inside the parentheses. We need two numbers that multiply to \( 10 \) and add up to \( 7 \). - These numbers are \( 2 \) and \( 5 \). \[ x^{2} + 7x + 10 = (x + 2)(x + 5) \] **Final Factored Form:** \[ 5x^{2} + 35x + 50 = 5(x + 2)(x + 5) \] --- **Summary:** - **Problem 4:** The quadratic \( 3x^{2} - 3x - 16 \) does not factor neatly over the integers. Its roots are \( x = \frac{3 \pm \sqrt{201}}{6} \). - **Problem 8:** The quadratic \( 5x^{2} + 35x + 50 \) factors to \( 5(x + 2)(x + 5) \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Did you know that quadratic equations, like the ones you've provided, have been studied for over two millennia? Ancient Babylonians were already solving similar equations around 2000 BC, using geometric methods! They laid the groundwork for what would later evolve into algebra as we know it today. Imagine them sketching out shapes to understand these tricky numbers! When grappling with quadratic expressions and seeking to factor or simplify them, a common blunder is misreading the signs. Be sure to carefully check each term as you factor! For the equations you've mentioned, it's also helpful to look for a common factor first, like the 3 in the first equation and factor out constants to make your calculations much easier. Happy factoring!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad