Responder
**4. \( 3x^{2} - 3x - 16 \) does not factor neatly over integers. Its roots are \( x = \frac{3 \pm \sqrt{201}}{6} \).**
**8. \( 5x^{2} + 35x + 50 = 5(x + 2)(x + 5) \).**
Solución
Sure, let's factor each of the given quadratic expressions.
---
### **4. \( 3x^{2} - 3x - 16 \)**
To factor the quadratic expression \( 3x^{2} - 3x - 16 \), we'll look for two numbers that multiply to \( 3 \times (-16) = -48 \) and add up to \( -3 \).
**Step 1:** Identify two numbers whose product is \(-48\) and whose sum is \(-3\).
After checking possible pairs, there are no integer pairs that satisfy both conditions. Therefore, the quadratic does not factor neatly over the integers.
**Step 2:** Use the **Quadratic Formula** to find the roots:
\[
x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}
\]
For the equation \( 3x^{2} - 3x - 16 = 0 \):
- \( a = 3 \)
- \( b = -3 \)
- \( c = -16 \)
\[
x = \frac{-(-3) \pm \sqrt{(-3)^{2} - 4 \times 3 \times (-16)}}{2 \times 3}
\]
\[
x = \frac{3 \pm \sqrt{9 + 192}}{6}
\]
\[
x = \frac{3 \pm \sqrt{201}}{6}
\]
**Conclusion:** The expression does not factor neatly over integers and its roots are:
\[
x = \frac{3 + \sqrt{201}}{6} \quad \text{and} \quad x = \frac{3 - \sqrt{201}}{6}
\]
---
### **8. \( 5x^{2} + 35x + 50 \)**
To factor the quadratic expression \( 5x^{2} + 35x + 50 \), follow these steps:
**Step 1:** Factor out the greatest common factor (GCF) from all terms.
\[
5x^{2} + 35x + 50 = 5(x^{2} + 7x + 10)
\]
**Step 2:** Factor the quadratic inside the parentheses.
We need two numbers that multiply to \( 10 \) and add up to \( 7 \).
- These numbers are \( 2 \) and \( 5 \).
\[
x^{2} + 7x + 10 = (x + 2)(x + 5)
\]
**Final Factored Form:**
\[
5x^{2} + 35x + 50 = 5(x + 2)(x + 5)
\]
---
**Summary:**
- **Problem 4:** The quadratic \( 3x^{2} - 3x - 16 \) does not factor neatly over the integers. Its roots are \( x = \frac{3 \pm \sqrt{201}}{6} \).
- **Problem 8:** The quadratic \( 5x^{2} + 35x + 50 \) factors to \( 5(x + 2)(x + 5) \).
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución