Pregunta
upstudy study bank question image url

21 Categorization 1 point On several occasions, Kurt recorded the number of people already in line when he arrived at a local deli and the amount of time elapsed between when he left for his lunch break and when he returned to his office. Using the data, Kurt made a scatter plot and found the equation of the line of best fit to be \( y=0.5 x+34.5 \), where x is the number of people already in line, and \( y \) is the elapsed time in minutes. If Kurt's lunch break is 45 minutes, would each of these numbers of people in line result in him returning to work late? Put in the category of Yes or No for each. Yes No Answers Chosen

Ask by Fernandez Deleon. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

| Number of People in Line | Returns Late? | |-------------------------|---------------| | >21 | Yes | | ≤21 | No |

Solución

To determine whether Kurt will return to work late based on the number of people already in line at the deli, we'll analyze the given linear equation and compare the elapsed time to his lunch break duration. **Given:** - **Equation of the line of best fit:** \( y = 0.5x + 34.5 \) - \( x \): Number of people already in line - \( y \): Elapsed time in minutes - **Lunch break duration:** 45 minutes **Objective:** Determine for each number of people (\( x \)) whether Kurt will return late (Yes) or not (No). **Analysis:** 1. **Set the elapsed time equal to the lunch break duration to find the cutoff point:** \[ 0.5x + 34.5 = 45 \] 2. **Solve for \( x \):** \[ 0.5x = 45 - 34.5 \\ 0.5x = 10.5 \\ x = \frac{10.5}{0.5} \\ x = 21 \] 3. **Interpretation:** - **If \( x > 21 \):** - Elapsed time \( y = 0.5x + 34.5 > 45 \) minutes - **Kurt returns late.** (Yes) - **If \( x \leq 21 \):** - Elapsed time \( y = 0.5x + 34.5 \leq 45 \) minutes - **Kurt does not return late.** (No) **Summary:** | Number of People in Line (\( x \)) | Returns Late? | |------------------------------------|----------------| | \( x > 21 \) | Yes | | \( x \leq 21 \) | No | **Example:** - **If there are 25 people in line:** \[ y = 0.5(25) + 34.5 = 12.5 + 34.5 = 47 \text{ minutes} \] - Since 47 > 45, **Yes**, Kurt returns late. - **If there are 18 people in line:** \[ y = 0.5(18) + 34.5 = 9 + 34.5 = 43.5 \text{ minutes} \] - Since 43.5 ≤ 45, **No**, Kurt does not return late. **Conclusion:** - **Yes:** When the number of people in line is greater than 21. - **No:** When the number of people in line is 21 or fewer.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

If Kurt's lunch break is 45 minutes, we can determine whether he would return late by plugging the number of people in line into his equation. For example, if there are 20 people in line: \( y = 0.5(20) + 34.5 = 10 + 34.5 = 44.5 \) minutes. Since 44.5 minutes is within his lunch break, he would not be late. However, if there were 22 people: \( y = 0.5(22) + 34.5 = 11 + 34.5 = 45.5 \) minutes. This means he would return late! You would judge each number of people in line the same way. Think of it like a fun prediction game - how many people can fit into 45 minutes?

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad