Pregunta
upstudy study bank question image url

Parents wish to have \( \$ 130,000 \) available for a child's education. If the child is now 8 years old, how much money must be set aside at \( 3 \% \) compounded semiannually to meet their financial goal when the child is 18 ? (i) Click the icon to view some finance formulas. The amount that should be set aside is \( \$ \square \). (Round up to the nearest dollar.)

Ask by Kirk Summers. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Parents need to set aside **\$96,449** now to have \$130,000 in 10 years at a 3% semiannual interest rate.

Solución

To determine how much money parents need to set aside now to have \$130,000 available for their child's education in 10 years (when the child turns 18), we'll use the **Present Value (PV)** formula for compound interest. ### Given: - **Future Value (FV)**: \$130,000 - **Annual Interest Rate (r)**: 3% or 0.03 - **Compounding Periods per Year (n)**: 2 (since it's compounded semiannually) - **Time (t)**: 10 years ### Formula: The present value \( PV \) is calculated using the formula: \[ PV = \frac{FV}{\left(1 + \frac{r}{n}\right)^{nt}} \] ### Plugging in the Values: \[ PV = \frac{130{,}000}{\left(1 + \frac{0.03}{2}\right)^{2 \times 10}} \] \[ PV = \frac{130{,}000}{\left(1 + 0.015\right)^{20}} \] \[ PV = \frac{130{,}000}{(1.015)^{20}} \] ### Calculating \((1.015)^{20}\): \[ (1.015)^{20} \approx 1.346855 \] ### Final Calculation: \[ PV = \frac{130{,}000}{1.346855} \approx 96{,}448.18 \] ### Rounding Up: Since we need to round up to the nearest dollar: \[ PV \approx \$96{,}449 \] ### **Answer:** The amount that should be set aside is **\$96,449**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find out how much money must be set aside today to reach a goal of \( \$ 130,000 \) in 10 years at an interest rate of \( 3\% \) compounded semiannually, you can use the present value formula: \[ PV = \frac{FV}{(1 + \frac{r}{n})^{nt}} \] Where: - \( PV \) = present value (the amount to set aside) - \( FV \) = future value (the amount needed in the future, which is \( \$ 130,000 \)) - \( r \) = annual interest rate (as a decimal, so \( 0.03 \)) - \( n \) = number of compounding periods per year (2 for semiannual) - \( t \) = number of years until the goal (10 years, since the child is 8 and will be 18) First, plug in the values: \[ PV = \frac{130,000}{(1 + \frac{0.03}{2})^{2 \times 10}} \] \[ PV = \frac{130,000}{(1 + 0.015)^{20}} \] \[ PV = \frac{130,000}{(1.015)^{20}} \] \[ PV = \frac{130,000}{1.346855007} \] \[ PV \approx 96,532.68 \] Rounding up to the nearest dollar, the amount that should be set aside is approximately \( \$96,533 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad