For the following problem use \( T=2 \pi \sqrt{\frac{L}{g}} \). Let \( \pi \approx 3.14 \) and \( g=32 \) feet per second \( { }^{2} \). A child is swinging on a rope 120 feet long over a river swimming hole. How long does it take (in seconds) to complete one swing back and forth?
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the period \( T \) of the swing, we can substitute the given values into the formula \( T = 2 \pi \sqrt{\frac{L}{g}} \). Here, \( L = 120 \) feet and \( g = 32 \) feet per second². First, we calculate \( \frac{L}{g} = \frac{120}{32} = 3.75 \). Now, we compute \( \sqrt{3.75} \): \( \sqrt{3.75} \approx 1.936 \). Now plug this back into the formula: \( T = 2 \pi (1.936) \approx 2 \times 3.14 \times 1.936 \approx 12.12 \). So, the time to complete one swing back and forth is approximately 12.12 seconds. This can be rounded off to a more convenient number: let’s say it takes about 12 seconds for those swinging fun!