Pregunta
2. Write in sigma notation: a) \( 1+2+3+4+5+6 \) b) \( 1+4+9+16+25+36+49 \) (c) \( 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\ldots+\frac{1}{10} \) d) \( 1+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+\frac{5}{6}+\ldots+\frac{20}{21} \) e) \( 1.2+2.3+3.4+\ldots+ \) to \( n \) terms. f) \( 3+3+3+\ldots+ \) to \( n \) terms. g) \( a+a+a+\ldots+ \) to \( n \) terms. (h) \( p^{2}+3 p^{4}+5 p^{6}+\ldots+ \) to \( n \) terms. i) \( x^{n}+x^{n}-1 y+x^{n-2} y^{2}+x^{n-3} y^{3}+\ldots+x y^{n-1}+y^{n} \) i) \( x+2 x^{2}+6 x^{3}+24 x^{4}+120 x^{5}+\ldots \) to \( n \) terms.
Ask by Parsons Burton. in South Africa
Jan 29,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
Here are the sigma notations for each expression:
a) \( \sum_{k=1}^{6} k \)
b) \( \sum_{k=1}^{7} k^{2} \)
c) \( \sum_{k=1}^{10} \frac{1}{k} \)
d) \( \sum_{k=1}^{20} \frac{k}{k+1} \)
e) \( \sum_{k=1}^{n} k(k+1) \)
f) \( \sum_{k=1}^{n} 3 \)
g) \( \sum_{k=1}^{n} a \)
h) \( \sum_{k=1}^{n} (2k - 1) p^{2k} \)
i)
1. \( \sum_{k=0}^{n} x^{n - k} y^{k} \)
2. \( \sum_{k=1}^{n} k! \, x^{k} \)
Solución
Sure! Below are the sigma (summation) notations for each of the given expressions:
---
**a)** \( 1 + 2 + 3 + 4 + 5 + 6 \)
\[
\sum_{k=1}^{6} k
\]
---
**b)** \( 1 + 4 + 9 + 16 + 25 + 36 + 49 \)
\[
\sum_{k=1}^{7} k^{2}
\]
---
**c)** \( 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \ldots + \frac{1}{10} \)
\[
\sum_{k=1}^{10} \frac{1}{k}
\]
---
**d)** \( 1 + \frac{2}{3} + \frac{3}{4} + \frac{4}{5} + \frac{5}{6} + \ldots + \frac{20}{21} \)
\[
\sum_{k=1}^{20} \frac{k}{k+1}
\]
---
**e)** \( 1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \ldots + n \cdot (n+1) \) (to \( n \) terms)
\[
\sum_{k=1}^{n} k(k+1)
\]
---
**f)** \( 3 + 3 + 3 + \ldots + 3 \) (to \( n \) terms)
\[
\sum_{k=1}^{n} 3
\]
---
**g)** \( a + a + a + \ldots + a \) (to \( n \) terms)
\[
\sum_{k=1}^{n} a
\]
---
**h)** \( p^{2} + 3p^{4} + 5p^{6} + \ldots \) (to \( n \) terms)
\[
\sum_{k=1}^{n} (2k - 1) p^{2k}
\]
---
**i)**
1. **First Expression:** \( x^{n} + x^{n-1}y + x^{n-2}y^{2} + x^{n-3}y^{3} + \ldots + xy^{n-1} + y^{n} \)
\[
\sum_{k=0}^{n} x^{n - k} y^{k}
\]
2. **Second Expression:** \( x + 2x^{2} + 6x^{3} + 24x^{4} + 120x^{5} + \ldots \) (to \( n \) terms)
\[
\sum_{k=1}^{n} k! \, x^{k}
\]
---
Each sigma notation succinctly represents the corresponding sum, with the index of summation (\( k \)) running through the specified range and the general term matching the pattern of the original series.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
Sure! Here’s how you can express each of those sums in sigma notation: a) \( \sum_{i=1}^{6} i \) b) \( \sum_{i=1}^{7} i^2 \) c) \( \sum_{i=1}^{10} \frac{1}{i} \) d) \( \sum_{i=1}^{20} \frac{i}{i+1} \) e) \( \sum_{i=1}^{n} i(i+1) \) f) \( \sum_{i=1}^{n} 3 \) g) \( \sum_{i=1}^{n} a \) h) \( \sum_{i=1}^{n} (2i-1) p^{2i} \) i) \( \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^{k} \) j) \( \sum_{n=1}^{n} \frac{(n-1)!}{(n-1-k)!} x^{n} \) Let me know if you need any additional assistance!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium