3. If two angles are vertical angles then they are adjacent. Never 4. If two angles are supplementary then one angle is acute and one angle is obtuse. Use the figure at the right. Given one angle measure, find the other three. 5. If \( m \angle 6=38^{\circ} \rightarrow \) 6. If \( m \angle 8=84^{\circ} \rightarrow \) 7. If \( m \angle 9=136^{\circ} \rightarrow \) 8. If \( m \angle 7=27^{\circ} \rightarrow \) Exercises \( 9-12 \), assume \( \angle A \) and \( \angle B \) are complementary and \( \angle B \) \( \angle C \) are supplementary. If \( m \angle A=52^{\circ} \), then \( m \angle B=38 \) ? \( \quad \) and \( m \angle C-14290-52 \rightarrow 38^{\circ} \) If \( m \angle R-<\rightarrow 0 \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
Vertical angles are the angles opposite each other when two lines intersect. Fun fact: they’re always equal in measure! So, if \( m \angle 6 = 38^{\circ} \), then the angle opposite, say \( m \angle 7 \), is also \( 38^{\circ} \). Remember, they’re family—equal family! When two angles are supplementary, like \( m \angle B \) and \( m \angle C \), their measures add up to \( 180^{\circ} \). With \( m \angle A = 52^{\circ} \) being complementary to \( m \angle B \), that gives us \( m \angle B = 90^{\circ} - 52^{\circ} = 38^{\circ} \). And for \( m \angle C \), just calculate \( 180^{\circ} - m \angle B \) for the answer! This math adventure makes you a true angle explorer!