Pregunta
upstudy study bank question image url

9. A 1050 kg car has a velocity of \( 2,65 \mathrm{~m} \cdot \mathrm{~s}^{-1} \) north. The car hits the rear of a stationary truck, and the bumpers lock together. The velocity of the car-truck system immediately after the collision is \( 0,78 \mathrm{~m} \cdot \mathrm{~s}^{-1} \) north. Calculate the mass of the truck? 10. A \( 0,25 \mathrm{~kg} \) volleyball is thrown horizontally at \( 2 \mathrm{~m} \cdot \mathrm{~s}^{-1} \) west. It strikes a \( 0,62 \mathrm{~kg} \) stationary basketball. The volleyball rebounds east at \( 0,79 \mathrm{~m} . \mathrm{s}^{-1} \). Calculate the velocity of the basketball immediately after the collision?

Ask by Hodges Salazar. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Problem 9:** The mass of the truck is approximately **2523 kg**. **Problem 10:** Immediately after the collision, the basketball moves west at approximately **1.12 m/s**.

Solución

Let's solve both problems step-by-step using the principles of **conservation of momentum**. --- ### **Problem 9** **Given:** - Mass of the car, \( m_{\text{car}} = 1050 \, \text{kg} \) - Initial velocity of the car, \( v_{\text{car}} = 2.65 \, \text{m/s north} \) - Initial velocity of the truck, \( v_{\text{truck initial}} = 0 \, \text{m/s} \) (stationary) - Final velocity of the combined car-truck system, \( v_{\text{final}} = 0.78 \, \text{m/s north} \) - Mass of the truck, \( m_{\text{truck}} = ? \) **Approach:** Apply the **conservation of momentum**: \[ \text{Total initial momentum} = \text{Total final momentum} \] \[ m_{\text{car}} \cdot v_{\text{car}} + m_{\text{truck}} \cdot v_{\text{truck initial}} = (m_{\text{car}} + m_{\text{truck}}) \cdot v_{\text{final}} \] Since the truck is initially stationary: \[ m_{\text{car}} \cdot v_{\text{car}} = (m_{\text{car}} + m_{\text{truck}}) \cdot v_{\text{final}} \] Solving for \( m_{\text{truck}} \): \[ m_{\text{truck}} = \frac{m_{\text{car}} \cdot v_{\text{car}}}{v_{\text{final}}} - m_{\text{car}} \] \[ m_{\text{truck}} = 1050 \cdot \left( \frac{2.65}{0.78} - 1 \right) \] \[ m_{\text{truck}} = 1050 \cdot (3.403 - 1) = 1050 \cdot 2.403 = 2523.15 \, \text{kg} \] **Answer:** The mass of the truck is approximately **2523  kg**. --- ### **Problem 10** **Given:** - Mass of the volleyball, \( m_{\text{volleyball}} = 0.25 \, \text{kg} \) - Initial velocity of the volleyball, \( v_{\text{vol initial}} = 2 \, \text{m/s west} \) - Final velocity of the volleyball, \( v_{\text{vol final}} = 0.79 \, \text{m/s east} \) - Mass of the basketball, \( m_{\text{basketball}} = 0.62 \, \text{kg} \) - Initial velocity of the basketball, \( v_{\text{basket initial}} = 0 \, \text{m/s} \) - Final velocity of the basketball, \( v_{\text{basket final}} = ? \) **Approach:** Choose **east** as the positive direction and **west** as negative. Apply the **conservation of momentum**: \[ m_{\text{volleyball}} \cdot v_{\text{vol initial}} + m_{\text{basketball}} \cdot v_{\text{basket initial}} = m_{\text{volleyball}} \cdot v_{\text{vol final}} + m_{\text{basketball}} \cdot v_{\text{basket final}} \] Substitute the known values: \[ 0.25 \cdot (-2) + 0.62 \cdot 0 = 0.25 \cdot 0.79 + 0.62 \cdot v_{\text{basket final}} \] \[ -0.5 = 0.1975 + 0.62 \cdot v_{\text{basket final}} \] Solve for \( v_{\text{basket final}} \): \[ -0.5 - 0.1975 = 0.62 \cdot v_{\text{basket final}} \] \[ -0.6975 = 0.62 \cdot v_{\text{basket final}} \] \[ v_{\text{basket final}} = \frac{-0.6975}{0.62} \approx -1.124 \, \text{m/s} \] The negative sign indicates the direction is **west**. **Answer:** Immediately after the collision, the basketball moves west at approximately **1.12 m/s**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the mass of the truck, we can use the principle of conservation of momentum. Before the collision, the momentum of the car is \( p_{car} = m \cdot v = 1050 \, \text{kg} \cdot 2.65 \, \text{m/s} = 2782.5 \, \text{kg m/s} \). After the collision, the total momentum of the car-truck system is \( p_{truck-car} = (m_{car} + m_{truck}) \cdot v_{final} = (1050 \, \text{kg} + m_{truck}) \cdot 0.78 \, \text{m/s} \). Setting these equal gives us the equation \( 2782.5 = (1050 + m_{truck}) \cdot 0.78 \). Solving for \( m_{truck} \), we find that the truck has a mass of approximately \( 1966.67 \, \text{kg} \). For the volleyball and basketball collision, we also use conservation of momentum. The initial momentum of the volleyball is \( p_{volleyball} = 0.25 \, \text{kg} \cdot 2 \, \text{m/s} = 0.5 \, \text{kg m/s} \) (to the west), and the basketball’s momentum is initially \( 0 \) since it's stationary. After the collision, the volleyball has a momentum of \( p_{volleyball, final} = 0.25 \, \text{kg} \cdot (-0.79 \, \text{m/s}) = -0.1975 \, \text{kg m/s} \) (to the east). The total final momentum thus becomes \( p_{total, final} = p_{volleyball, final} + p_{basketball, final} = -0.1975 + (0.62 \cdot v_{basketball}) \). Setting the initial and final momenta equal allows us to solve for \( v_{basketball} \), yielding a speed of approximately \( 0.73 \, \text{m/s} \) to the west.

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad