Pregunta
upstudy study bank question image url

\( \sqrt { 2 } \sin ( x + a 5 ^ { \circ } ) = \sin x + \cos x \)

Ask by Matthews Campos. in South Africa
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The constant \( a \) must equal 9°.

Solución

To solve the equation: \[ \sqrt{2} \sin(x + a \cdot 5^\circ) = \sin x + \cos x \] we can proceed as follows: ### Step 1: Simplify the Right Side First, recognize that the right side of the equation can be expressed using a single sine function with a phase shift. Recall that: \[ \sin x + \cos x = \sqrt{2} \sin\left(x + 45^\circ\right) \] This is derived from the identity: \[ \sin x + \cos x = \sqrt{2} \sin\left(x + 45^\circ\right) \] ### Step 2: Equate Both Sides Now, substitute the simplified right side back into the original equation: \[ \sqrt{2} \sin(x + a \cdot 5^\circ) = \sqrt{2} \sin\left(x + 45^\circ\right) \] Since the \(\sqrt{2}\) terms cancel out, we have: \[ \sin(x + a \cdot 5^\circ) = \sin\left(x + 45^\circ\right) \] ### Step 3: Solve for the Phase Shift The equation \(\sin(A) = \sin(B)\) implies that: \[ A = B + 360^\circ \cdot k \quad \text{or} \quad A = 180^\circ - B + 360^\circ \cdot k \quad \text{for any integer } k \] Applying this to our equation: 1. **First Case:** \[ x + a \cdot 5^\circ = x + 45^\circ + 360^\circ \cdot k \] Simplifying: \[ a \cdot 5^\circ = 45^\circ + 360^\circ \cdot k \] \[ a = \frac{45^\circ + 360^\circ \cdot k}{5^\circ} = 9 + 72 \cdot k \] 2. **Second Case:** \[ x + a \cdot 5^\circ = 180^\circ - (x + 45^\circ) + 360^\circ \cdot k \] \[ x + a \cdot 5^\circ = 135^\circ - x + 360^\circ \cdot k \] \[ 2x + a \cdot 5^\circ = 135^\circ + 360^\circ \cdot k \] \[ x = \frac{135^\circ - a \cdot 5^\circ + 360^\circ \cdot k}{2} \] However, this case imposes a condition on \(x\), making it less general unless \(a\) is chosen to satisfy the equation for all \(x\). ### Conclusion The most straightforward solution comes from the first case, leading to: \[ a = 9 + 72 \cdot k \] where \(k\) is any integer. Typically, the smallest positive value is taken, so: \[ a = 9^\circ \] **Answer:** The constant a must equal 9°. Thus, the solution is a = 9°.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the equation \( \sqrt{2} \sin(x + 5^\circ) = \sin x + \cos x \), you can start by simplifying the right side. Recall that \( \sin x + \cos x \) can be rewritten as \( \sqrt{2} \sin\left(x + 45^\circ\right) \). This substitution is key to linking both sides of the equation. So, the equation becomes: \[ \sqrt{2} \sin(x + 5^\circ) = \sqrt{2} \sin\left(x + 45^\circ\right) \] Dividing both sides by \( \sqrt{2} \) (assuming it’s not zero) gives you: \[ \sin(x + 5^\circ) = \sin\left(x + 45^\circ\right) \] Using the property of sine, this can yield multiple solutions based on sine's periodic nature, allowing you to explore values of \( x \) based on the alignments of angles. It's worth noting that understanding the transformations of sine and cosine functions can significantly enhance your problem-solving skills in trigonometry. Keeping a trigonometric unit circle handy will aid in visualizing the angles and their relationships. And don’t forget, sketching graphs of sine and cosine functions can also make identifying solutions more intuitive and fun!

preguntas relacionadas

our tout nombre réel \( \theta \), pour tout nombre entier relatif \( n \), molvre Exemple \[ (\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta \] \( \theta \) étant un nombre réel, exprimons \( \cos 4 \theta \) et \( \sin 4 \theta \) en fonction de \( \cos \theta \) et \( \sin \theta \). \[ \begin{array}{l} =\left(\cos ^{2} \theta+\sin ^{2} \theta\right)^{2}-8 \cos ^{2} \theta \sin ^{2} \theta \\ =1-8 \cos ^{2} \theta \sin ^{2} \theta=1-8 \cos ^{2} \theta+8 \cos ^{4} \theta \end{array} \] Formules d'Euler Propriété \[ \begin{array}{l} \text { n a } \cos 4 \theta+i \sin 4 \theta=(\cos \theta+i \sin \theta)^{4} \\ =\cos ^{4} \theta+4 \cos ^{3} \theta(i \sin \theta)+6 \cos ^{2} \theta(i \sin \theta)^{2}+4 \cos \theta(i \sin \theta)^{3}+(i \sin \theta)^{4} \\ =\cos ^{4} \theta+\sin ^{4} \theta-6 \cos ^{2} \theta \sin ^{2} \theta+4 i\left(\cos ^{3} \theta \sin \theta-\cos \theta \sin ^{3} \theta\right) \\ \begin{aligned} \sin 4 \theta & =4\left(\cos ^{3} \theta \sin \theta-\cos \theta \sin ^{3} \theta\right) \\ & =4 \cos \theta \sin \theta\left(\cos ^{2} \theta\right. \end{aligned} \\ \cos 4 \theta=\cos ^{4} \theta+\sin ^{4} \theta-6 \cos ^{2} \theta \sin ^{2} \theta \\ =4 \cos \theta \sin \theta\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \text {. } \\ \text { onc : } \quad \cos 4 \theta=\cos ^{4} \theta+\sin ^{4} \theta-6 \cos ^{2} \theta \sin ^{2} \theta \\ =\left(\cos ^{2} \theta+\sin ^{2} \theta\right)^{2}-8 \cos ^{2} \theta \sin ^{2} \theta \end{array} \]
Trigonometría Côte d'Ivoire Feb 05, 2025

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad