Pregunta
upstudy study bank question image url

B 11. Solve, assuming a linear equation fits the situation. The value of a computer is \( \$ 3500 \). After 2 years, the value of this computer is \( \$ 2200 \). Find the value of the computer after 5 years.

Ask by Newton Nguyen. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After 5 years, the computer will be worth \$250.

Solución

To determine the value of the computer after 5 years using a linear equation, follow these steps: ### **1. Define Variables** - Let \( t \) represent the number of years since the purchase. - Let \( V(t) \) represent the value of the computer after \( t \) years. ### **2. Set Up the Linear Equation** Assume the value of the computer decreases linearly over time. The general form of a linear equation is: \[ V(t) = mt + b \] where: - \( m \) is the slope (rate of change per year), - \( b \) is the y-intercept (initial value when \( t = 0 \)). ### **3. Determine the Y-Intercept (\( b \))** At \( t = 0 \) (the time of purchase), the value of the computer is \$3500: \[ V(0) = m(0) + b = 3500 \] \[ b = 3500 \] ### **4. Use the Second Data Point to Find the Slope (\( m \))** After 2 years, the value drops to \$2200: \[ V(2) = m(2) + 3500 = 2200 \] \[ 2m + 3500 = 2200 \] \[ 2m = 2200 - 3500 \] \[ 2m = -1300 \] \[ m = \frac{-1300}{2} \] \[ m = -650 \] ### **5. Write the Complete Linear Equation** Now, substitute \( m \) and \( b \) back into the equation: \[ V(t) = -650t + 3500 \] ### **6. Calculate the Value After 5 Years** Plug \( t = 5 \) into the equation: \[ V(5) = -650(5) + 3500 \] \[ V(5) = -3250 + 3500 \] \[ V(5) = 250 \] ### **Conclusion** After **5 years**, the value of the computer will be **\$250**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

The depreciation of the computer’s value can be calculated to determine how much it loses in value each year. The initial value is $3500, and after 2 years, it is valued at $2200. The loss over 2 years is $3500 - $2200 = $1300, which means it depreciates $650 per year. To find the value after 5 years, calculate the total depreciation for 5 years: $650 * 5 = $3250. Subtract this from the original value: $3500 - $3250 = $250. So, after 5 years, the computer will be worth $250. The linear equation that models this situation is \( V(t) = 3500 - 650t \), where \( t \) is the number of years. Plugging \( t = 5 \) into the equation gives \( V(5) = 3500 - 650(5) = 250 \). This shows the equation's effectiveness in predicting the value change over time.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad