Pregunta
Which function represents exponential decay? \( f(x)=\frac{1}{2}(2)^{x} \) \( f(x)=\frac{3}{4}\left(-\frac{1}{5}\right)^{x} \) \( f(x)=3\left(\frac{7}{2}\right)^{x} \) \( f(x)=2\left(\frac{2}{3}\right)^{x} \)
Ask by Malone Mullins. in the United States
Jan 27,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( f(x) = 2\left(\frac{2}{3}\right)^x \) represents exponential decay.
Solución
An **exponential decay** function has the form:
\[ f(x) = a \cdot b^x \]
where:
- \( a \) is a constant (the initial value),
- \( 0 < b < 1 \) (the base is between 0 and 1).
This ensures that as \( x \) increases, \( f(x) \) decreases.
Let's evaluate each of the given functions:
1. **\( f(x) = \frac{1}{2}(2)^x \)**
- Base \( b = 2 \) (which is greater than 1).
- This represents **exponential growth**, not decay.
2. **\( f(x) = \frac{3}{4}\left(-\frac{1}{5}\right)^x \)**
- Base \( b = -\frac{1}{5} \).
- While \( |b| = \frac{1}{5} < 1 \), the negative base introduces oscillations, making it not a standard form for exponential decay.
3. **\( f(x) = 3\left(\frac{7}{2}\right)^x \)**
- Base \( b = \frac{7}{2} \) (which is greater than 1).
- This represents **exponential growth**, not decay.
4. **\( f(x) = 2\left(\frac{2}{3}\right)^x \)**
- Base \( b = \frac{2}{3} \) (which is between 0 and 1).
- This fits the definition of **exponential decay**.
**Conclusion:**
**\( f(x) = 2\left(\frac{2}{3}\right)^x \)** represents exponential decay.
**Answer:**
\( f(x) = 2\left(\dfrac{2}{3}\right)^{\,x} \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To represent exponential decay, we need a function that decreases as \( x \) increases. The function \( f(x)=2\left(\frac{2}{3}\right)^{x} \) fits this definition since the base of the exponent \( \frac{2}{3} \) is between 0 and 1, indicating that it decays as \( x \) grows larger. Additionally, you'll notice that exponential decay is commonly seen in real-life scenarios such as radioactive decay or the depreciation of assets. For example, if you own a car, each year it loses value at a certain rate, illustrating how exponential decay works in economics!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium