Find all other zeros of \( P(x)=x^{3}+6 x^{2}+18 x+40 \), given that \( -1-3 i \) is a zer (If there is more than one zero, separate them with commas.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find all the zeros of the polynomial \( P(x) = x^3 + 6x^2 + 18x + 40 \), given that one zero is \( -1 - 3i \), we first use the fact that the coefficients of the polynomial are real. This implies that complex roots must come in conjugate pairs. Thus, the other zero must be \( -1 + 3i \). Next, we can factor \( P(x) \) by finding the polynomial formed by these two zeros. The sum and product of the roots \( -1 - 3i \) and \( -1 + 3i \) can be computed as follows: 1. The sum of the roots: \[ (-1 - 3i) + (-1 + 3i) = -2 \] 2. The product of the roots: \[ (-1 - 3i)(-1 + 3i) = (-1)^2 - (3i)^2 = 1 - (-9) = 10 \] Thus, the quadratic corresponding to these complex roots is \[ x^2 + 2x + 10. \] Now, we divide \( P(x) \) by \( x^2 + 2x + 10 \) to find the remaining zero. Using synthetic or polynomial division, we find: \[ P(x) \div (x^2 + 2x + 10) = x + 4. \] So, \( P(x) \) can be factored as: \[ P(x) = (x + 4)(x^2 + 2x + 10). \] Setting \( x + 4 = 0 \) gives us the remaining zero: \[ x = -4. \] Thus, the full list of zeros for \( P(x) \) is: \[ -1 - 3i, -1 + 3i, -4. \] The complete set of zeros is: \[ -1 - 3i, -1 + 3i, -4. \]