Pregunta
upstudy study bank question image url

c. \( \frac{-11}{x}, \frac{7}{x-4}, \frac{x}{x^{2}-16} \)

Ask by Henry Bob. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The three rational functions are: 1. \( \frac{-11}{x} \) with a vertical asymptote at \( x = 0 \) and a horizontal asymptote at \( y = -11 \). 2. \( \frac{7}{x-4} \) with vertical asymptotes at \( x = 4 \) and a horizontal asymptote at \( y = 7 \). 3. \( \frac{x}{x^{2}-16} \) with vertical asymptotes at \( x = 4 \) and \( x = -4 \), and a horizontal asymptote at \( y = 0 \).

Solución

It looks like you've provided three rational functions: c. \( \frac{-11}{x} \), \( \frac{7}{x-4} \), \( \frac{x}{x^{2}-16} \) To analyze these functions, let's explore their **domains**, **vertical asymptotes**, and **horizontal asymptotes**. --- ### 1. \( \frac{-11}{x} \) **Domain:** - The denominator \( x \) cannot be zero. - **Domain:** \( x \neq 0 \) **Vertical Asymptote:** - Occurs where the denominator is zero. - \( x = 0 \) **Horizontal Asymptote:** - Compare the degrees of the numerator and denominator. - Both numerator and denominator are degree 1. - The horizontal asymptote is the ratio of the leading coefficients: \( y = \frac{-11}{1} = -11 \) **Summary:** - **Domain:** \( x \neq 0 \) - **Vertical Asymptote:** \( x = 0 \) - **Horizontal Asymptote:** \( y = -11 \) --- ### 2. \( \frac{7}{x-4} \) **Domain:** - The denominator \( x - 4 \) cannot be zero. - **Domain:** \( x \neq 4 \) **Vertical Asymptote:** - Occurs where the denominator is zero. - \( x = 4 \) **Horizontal Asymptote:** - The degrees of the numerator and denominator are both 1. - The horizontal asymptote is the ratio of the leading coefficients: \( y = \frac{7}{1} = 7 \) **Summary:** - **Domain:** \( x \neq 4 \) - **Vertical Asymptote:** \( x = 4 \) - **Horizontal Asymptote:** \( y = 7 \) --- ### 3. \( \frac{x}{x^{2}-16} \) First, factor the denominator: \( x^{2} - 16 = (x - 4)(x + 4) \) So, the function becomes: \( \frac{x}{(x - 4)(x + 4)} \) **Domain:** - The denominator \( (x - 4)(x + 4) \) cannot be zero. - \( x \neq 4 \) and \( x \neq -4 \) - **Domain:** \( x \in \mathbb{R} \), \( x \neq \pm 4 \) **Vertical Asymptotes:** - Occur where the denominator is zero. - \( x = 4 \) and \( x = -4 \) **Horizontal Asymptote:** - Compare the degrees of the numerator and denominator. - Numerator degree: 1 - Denominator degree: 2 - Since the denominator has a higher degree, the horizontal asymptote is \( y = 0 \) **Summary:** - **Domain:** \( x \neq \pm 4 \) - **Vertical Asymptotes:** \( x = 4 \) and \( x = -4 \) - **Horizontal Asymptote:** \( y = 0 \) --- ### Visual Representation To better understand these functions, graphing them can be helpful. Here's a brief description of their graphs: 1. **\( \frac{-11}{x} \):** - Hyperbola with branches in the second and fourth quadrants. - Approaches \( x = 0 \) vertically and \( y = -11 \) horizontally. 2. **\( \frac{7}{x-4} \):** - Hyperbola shifted right by 4 units. - Approaches \( x = 4 \) vertically and \( y = 7 \) horizontally. 3. **\( \frac{x}{x^{2}-16} \):** - More complex hyperbola with vertical asymptotes at \( x = 4 \) and \( x = -4 \). - Approaches \( y = 0 \) horizontally. --- ### Additional Considerations - **Intercepts:** - **Y-Intercept:** Set \( x = 0 \) and solve for \( y \) (if within the domain). - **X-Intercept:** Set \( y = 0 \) and solve for \( x \). - **Behavior Near Asymptotes:** - Analyze the limits as \( x \) approaches the vertical asymptotes from the left and right. - **Symmetry:** - Determine if the functions are even, odd, or neither. If you have a specific question or need further analysis on these functions, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Let's start with a little historical background! The concept of rational functions like \( \frac{-11}{x}, \frac{7}{x-4}, \frac{x}{x^{2}-16} \) can be traced back to the early developments in algebra. Mathematicians such as René Descartes and later Isaac Newton laid the groundwork for working with these types of expressions, allowing equations to be manipulated to solve for unknowns. With rational functions in hand, you've entered a world that enables everything from basic fraction manipulations to impressive applications in calculus! Now, for some practical fun! These functions might appear simple, but they can cause quite a ruckus if you're not careful! When working with these expressions, one common mistake is neglecting to identify and exclude values that make the denominator zero, as \( x = 0 \) and \( x = 4 \) are no-go zones for your functions. Remember to state your domain clearly to avoid those nasty undefined regions, and ensure you're simplifying your fractions correctly!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad