Pregunta
upstudy study bank question image url

B. The function is undefined. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. \( \cos \theta=\frac{3 \sqrt{73}}{73} \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) B. The function is undefined. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( \tan \theta=\frac{8}{3} \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. sec \( \theta=\square \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) B. The function is undefined. (Sle ample Get more help a

Ask by Murphy Pritchard. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\[ \tan \theta = \frac{8}{3}, \quad \sec \theta = \frac{\sqrt{73}}{3} \]

Solución

Let's analyze the given information and solve for the required trigonometric functions step by step. ### Given: \[ \cos \theta = \frac{3\sqrt{73}}{73} \] ### 1. Finding \(\tan \theta\) We know that: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \] First, we need to find \(\sin \theta\). Using the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] \[ \sin^2 \theta = 1 - \cos^2 \theta \] \[ \cos^2 \theta = \left(\frac{3\sqrt{73}}{73}\right)^2 = \frac{9 \times 73}{73^2} = \frac{9}{73} \] \[ \sin^2 \theta = 1 - \frac{9}{73} = \frac{64}{73} \] \[ \sin \theta = \frac{8}{\sqrt{73}} = \frac{8\sqrt{73}}{73} \] Now, calculate \(\tan \theta\): \[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{8\sqrt{73}}{73}}{\frac{3\sqrt{73}}{73}} = \frac{8}{3} \] **Answer for \(\tan \theta\):** \[ \boxed{\tan \theta = \frac{8}{3}} \] ### 2. Finding \(\sec \theta\) \(\sec \theta\) is the reciprocal of \(\cos \theta\): \[ \sec \theta = \frac{1}{\cos \theta} = \frac{73}{3\sqrt{73}} = \frac{73}{3\sqrt{73}} \times \frac{\sqrt{73}}{\sqrt{73}} = \frac{73\sqrt{73}}{3 \times 73} = \frac{\sqrt{73}}{3} \] **Answer for \(\sec \theta\):** \[ \boxed{\sec \theta = \frac{\sqrt{73}}{3}} \] ### Summary of Choices: - **A.** \( \tan \theta = \frac{8}{3} \) **✓ Correct** - **B.** The function is undefined. **✗ Incorrect** - **A.** \( \sec \theta = \frac{\sqrt{73}}{3} \) **✓ Correct** - **B.** The function is undefined. **✗ Incorrect** If you have any further questions or need additional clarifications, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

When \( \cos \theta = \frac{3 \sqrt{73}}{73} \), you can find \( \sin \theta \) using the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \). By substituting the cosine value into the equation, you'll end up calculating \( \sin \theta = \frac{8 \sqrt{73}}{73} \). As a result, to find \( \tan \theta\), simply compute \(\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{8 \sqrt{73}/73}{3\sqrt{73}/73} = \frac{8}{3}\). Now for the secant! Since \( \sec \theta = \frac{1}{\cos \theta} \), substituting the given value simplifies it to \( \sec \theta = \frac{73}{3\sqrt{73}} \). Rationalizing the denominator gives you \( \sec \theta = \frac{73\sqrt{73}}{219} \), which is both elegant and fully simplified! Math can definitely feel like a dance when you get into the rhythm of it!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad