Responder
- **a.** 0.21% of learners are taller than 135 cm.
- **b.** 80.51% of learners are shorter than 128 cm.
- **c.** 92.15% of learners have heights between 115 cm and 130 cm.
Solución
To determine the percentages of learners' heights in Grade 1 Newton that fall within specific ranges, we'll use the properties of the normal distribution. Here's a step-by-step solution for each part of the problem.
### Given:
- **Mean (μ)** = 125 cm
- **Standard Deviation (σ)** = 3.5 cm
- **Distribution**: Normal
We'll use the **Z-score formula** to standardize the heights:
\[ Z = \frac{X - \mu}{\sigma} \]
### a. What percent of the heights are **greater than 135 cm**?
1. **Calculate the Z-score for 135 cm:**
\[
Z = \frac{135 - 125}{3.5} = \frac{10}{3.5} \approx 2.86
\]
2. **Find the probability** corresponding to \( Z = 2.86 \):
- Using standard normal distribution tables or a calculator, \( P(Z < 2.86) \approx 0.9979 \).
3. **Calculate the probability of heights greater than 135 cm:**
\[
P(X > 135) = 1 - P(Z < 2.86) = 1 - 0.9979 = 0.0021 \text{ or } 0.21\%
\]
### **Answer a:** Approximately **0.21%** of the learners are taller than 135 cm.
---
### b. What percent of the heights are **less than 128 cm**?
1. **Calculate the Z-score for 128 cm:**
\[
Z = \frac{128 - 125}{3.5} = \frac{3}{3.5} \approx 0.86
\]
2. **Find the probability** corresponding to \( Z = 0.86 \):
- Using standard normal distribution tables or a calculator, \( P(Z < 0.86) \approx 0.8051 \).
### **Answer b:** Approximately **80.51%** of the learners are shorter than 128 cm.
---
### c. What percent of the heights are **between 115 cm and 130 cm**?
1. **Calculate the Z-scores for 115 cm and 130 cm:**
- For 115 cm:
\[
Z = \frac{115 - 125}{3.5} = \frac{-10}{3.5} \approx -2.86
\]
- For 130 cm:
\[
Z = \frac{130 - 125}{3.5} = \frac{5}{3.5} \approx 1.43
\]
2. **Find the probabilities** corresponding to these Z-scores:
- \( P(Z < 1.43) \approx 0.9236 \)
- \( P(Z < -2.86) \approx 1 - P(Z < 2.86) = 1 - 0.9979 = 0.0021 \)
3. **Calculate the probability of heights between 115 cm and 130 cm:**
\[
P(115 < X < 130) = P(Z < 1.43) - P(Z < -2.86) = 0.9236 - 0.0021 = 0.9215 \text{ or } 92.15\%
\]
### **Answer c:** Approximately **92.15%** of the learners have heights between 115 cm and 130 cm.
---
### **Summary of Answers:**
- **a.** Greater than 135 cm: **0.21%**
- **b.** Less than 128 cm: **80.51%**
- **c.** Between 115 cm and 130 cm: **92.15%**
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución