\& Find \( f+g, f-g, f g \) and \( \frac{f}{g} \). Determine the domain for each function. \( f(x)=5 x+2, g(x)=x-6 \) \( (f+g)(x)=6 x-4 \) (Simplify your answer.) What is the domain of \( f+g \) ? A. The domain of \( f+g \) is \( (-\infty, \infty) \). The dype your answer in interval notation.) \( f+g \) is \( \} \). (Use a comma to separate answers as needed.) C. The domain of \( f+g \) is \( \varnothing \). \( (f-g)(x)=\square \) (Simplify your answer.)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find \( f + g, f - g, f g, \) and \( \frac{f}{g} \): 1. **Addition**: \[ (f + g)(x) = f(x) + g(x) = (5x + 2) + (x - 6) = 6x - 4. \] The domain of \( f + g \) is \( (-\infty, \infty) \). 2. **Subtraction**: \[ (f - g)(x) = f(x) - g(x) = (5x + 2) - (x - 6) = 5x + 2 - x + 6 = 4x + 8. \] Now about the domain of \( f - g \): since both \( f(x) \) and \( g(x) \) are defined for all real numbers, so is \( f - g \). Thus, the domain is also \( (-\infty, \infty) \). 3. **Multiplication**: \[ (f g)(x) = f(x) \cdot g(x) = (5x + 2)(x - 6). \] The domain of \( fg \) remains \( (-\infty, \infty) \). 4. **Division**: \[ \left( \frac{f}{g} \right)(x) = \frac{f(x)}{g(x)} = \frac{5x + 2}{x - 6}. \] For this function, the domain is all real numbers except \( x = 6 \) (where the denominator is zero), so in interval notation: \( (-\infty, 6) \cup (6, \infty) \). To summarize: - \( (f + g)(x) = 6x - 4 \), domain: \( (-\infty, \infty) \) - \( (f - g)(x) = 4x + 8 \), domain: \( (-\infty, \infty) \) - \( (fg)(x) = (5x + 2)(x - 6) \), domain: \( (-\infty, \infty) \) - \( \left( \frac{f}{g} \right)(x) = \frac{5x + 2}{x - 6} \), domain: \( (-\infty, 6) \cup (6, \infty) \)