Write the equation of the tangent line to the curve at the indicated point. \[ y=2 x^{2}-3 x+6 \text { at } x=-2 \]
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the equation of the tangent line to the curve \( y=2x^{2}-3x+6 \) at \( x=-2 \), we first need to determine the slope of the tangent line by calculating the derivative of the function. 1. **Find the derivative**: \[ y' = \frac{dy}{dx} = 4x - 3 \] 2. **Evaluate the derivative at \( x = -2 \)**: \[ y'(-2) = 4(-2) - 3 = -8 - 3 = -11 \] 3. **Find the \( y \)-coordinate of the curve at \( x = -2 \)**: \[ y(-2) = 2(-2)^{2} - 3(-2) + 6 = 2(4) + 6 + 6 = 8 + 6 + 6 = 20 \] Now we have the point \( (-2, 20) \) and the slope \( -11 \). 4. **Use the point-slope form of the equation of the tangent line**: \[ y - y_1 = m(x - x_1) \] where \( m = -11 \), \( (x_1, y_1) = (-2, 20) \): \[ y - 20 = -11(x + 2) \] Simplifying this gives: \[ y - 20 = -11x - 22 \implies y = -11x - 2 \] Thus, the equation of the tangent line to the curve at the point \( x = -2 \) is: \[ y = -11x - 2 \]