Pregunta
upstudy study bank question image url

Cool Down: Choose Your Own Solution \( \begin{array}{l}3 x+8=3 x+ \\ \text { What value could you write in after } 3 x \text { that would make the equation true for: } \\ \text { 1. no values of } x \text { ? } \\ \text { 2. all values of } x \text { ? } \\ \text { 3. just one value of } x \text { ? }\end{array} \) ?

Ask by Pena Lynch. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To make the equation \(3x + 8 = 3x + \text{[value]}\) true: 1. **No values of \( x \):** Use any constant different from 8, e.g., \(3x + 8 = 3x + 5\). 2. **All values of \( x \):** Use the same constant as on the left, e.g., \(3x + 8 = 3x + 8\). 3. **One value of \( x \):** Use an expression involving \( x \), e.g., \(3x + 8 = 3x + x + 5\).

Solución

Certainly! Let's analyze the equation and determine appropriate values to place after \( 3x \) to satisfy each of the given conditions. **Given Equation:** \[ 3x + 8 = 3x + \text{[value]} \] We need to choose a suitable **[value]** such that: 1. **No values of \( x \) satisfy the equation.** 2. **All values of \( x \) satisfy the equation.** 3. **Only one specific value of \( x \) satisfies the equation.** Let's explore each scenario in detail. --- ### 1. **No Values of \( x \) Satisfy the Equation** **Objective:** Make the equation **false** for all possible values of \( x \). **Approach:** - Substitute **[value]** with a **constant** that is **different** from the constant term on the left side. - This creates a contradiction, making the equation unsolvable. **Example:** \[ 3x + 8 = 3x + 5 \] **Explanation:** - Subtract \( 3x \) from both sides: \[ 8 = 5 \] - This is a false statement, meaning there's **no solution**. **General Rule:** Set **[value]** to any constant **not equal** to 8. --- ### 2. **All Values of \( x \) Satisfy the Equation** **Objective:** Make the equation **always true**, regardless of the value of \( x \). **Approach:** - Substitute **[value]** with the **same constant** that's on the left side. - This ensures both sides of the equation are identical. **Example:** \[ 3x + 8 = 3x + 8 \] **Explanation:** - Subtract \( 3x \) from both sides: \[ 8 = 8 \] - This is always true, meaning **all values** of \( x \) are solutions. **General Rule:** Set **[value]** to **8**. --- ### 3. **Only One Specific Value of \( x \) Satisfies the Equation** **Objective:** Make the equation **true for exactly one value** of \( x \). **Approach:** - Substitute **[value]** with an **expression involving \( x \)**. - This introduces an additional variable, allowing the equation to be solvable for a unique \( x \). **Example:** \[ 3x + 8 = 3x + x + 5 \] **Simplify and Solve:** \[ 3x + 8 = 4x + 5 \] \[ 8 - 5 = 4x - 3x \] \[ 3 = x \] **Explanation:** - The equation simplifies to \( x = 3 \), meaning **only \( x = 3 \)** satisfies the equation. **Another Example:** \[ 3x + 8 = 3x - 2x + 10 \] **Simplify and Solve:** \[ 3x + 8 = x + 10 \] \[ 3x - x = 10 - 8 \] \[ 2x = 2 \Rightarrow x = 1 \] **Explanation:** - The equation simplifies to \( x = 1 \), meaning **only \( x = 1 \)** satisfies the equation. **General Rule:** Set **[value]** to an expression of the form **\( ax + b \)**, where \( a \neq 0 \). This introduces a variable term, allowing the equation to have a unique solution. --- ### **Summary** - **No Solution:** \(\boxed{3x + 8 = 3x + 5}\) *(Any constant not equal to 8)* - **All Solutions:** \(\boxed{3x + 8 = 3x + 8}\) *(The constant 8)* - **One Solution:** \(\boxed{3x + 8 = 3x + x + 5}\) *(An expression involving \( x \), such as \( x + 5 \))* By appropriately choosing the **[value]**, you can control the nature of the solutions to the equation.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To make the equation true for no values of \( x \), you could write a number on the right side that is not equal to 8, such as \( 9 \). This creates a contradiction, as \( 3x + 8 \) will never equal \( 3x + 9 \) for any \( x \). For the case of all values of \( x \), you could simply write \( 8 \) after \( 3x \). This would make the equation \( 3x + 8 = 3x + 8 \), which is true for every possible value of \( x \). To make the equation true for just one value of \( x \), you could write \( 3x + c \) after \( 3x \), where \( c \) is a constant that would form a specific solution. For instance, you could write \( 8 + k \) that should equal \( 0x + 8 \) to find an \( x \) that satisfies \( k \) only.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad