\( \times \) Find the greatest common factor of the expressions \( 18 x^{3} y^{3} \) \( 12 x^{5} y^{2} \) \( 6 x^{2} y^{3} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the greatest common factor (GCF) of the expressions \( 18 x^{3} y^{3} \), \( 12 x^{5} y^{2} \), and \( 6 x^{2} y^{3} \), we first determine the GCF of the numerical coefficients and then the lowest powers of each variable. 1. **Numerical Coefficients**: - The coefficients are 18, 12, and 6. - The factors of 18 are \( 1, 2, 3, 6, 9, 18 \). - The factors of 12 are \( 1, 2, 3, 4, 6, 12 \). - The factors of 6 are \( 1, 2, 3, 6 \). - The greatest common factor among these is \( 6 \). 2. **Variable Factors**: - For \( x \): The powers are \( x^3 \), \( x^5 \), and \( x^2 \). The lowest power is \( x^2 \). - For \( y \): The powers are \( y^3 \), \( y^2 \), and \( y^3 \). The lowest power is \( y^2 \). Combining these, we find that the GCF of the expressions is: \[ 6 x^{2} y^{2} \]